Log in

GAMMA-400 Project

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Extraterrestrial gamma-ray astronomy is now a source of a new knowledge in the fields of astrophysics, cosmic-ray physics, and the nature of dark matter. The next absolutely necessary step in the development of extraterrestrial high-energy gamma-ray astronomy is the improvement of the physical and technical characteristics of gamma-ray telescopes, especially their angular and energy resolutions. Such a new generation telescope will be GAMMA-400, currently under development. Together with an X-ray telescope, it will perform precise and detailed observations in the energy range of ~20 MeV to ~10 000 GeV and 3–30 keV the Galactic plane, especially, toward the Galactic Center, Fermi Bubbles, Crab, Cygnus, etc. The GAMMA-400 will operate in the highly elliptic orbit continuously for a long time with the unprecedented angular (~0.01◦ at Eγ = 100 GeV) and energy (~1% at Eγ = 100 GeV) resolutions, exceeding the Fermi-LAT as well as ground-based gamma-ray telescopes by a factor of 5–10. GAMMA-400 will permit resolving gamma rays from annihilation or decay of dark matter particles, identifyingmany discrete sources (many of which are variable), clarifying the structure of extended sources, specifying the data on the diffuse emission, as well as measuring electron + positron fluxes and specifying electron + positron spectrum in the energy range from 1 GeV to 10 000 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Kraushaar, G. W. Clark, G. P. Garmire, R. Borken, P. Higbie, C. Leong, and T. Thorsos, Astrophys. J. 177, 341 (1972).

    Article  ADS  Google Scholar 

  2. L. S. Bratolyubova-Tsulukidze, N. L. Grigorov, L. F. Kalinkin, A. S. Melioranskiy, Ye. A. Pryakhin, I. A. Savenko, and V. Ya. Yufarkin, Geomagnetism and Aeronomy 11, 499 (1972).

    ADS  Google Scholar 

  3. S. A. Volobuev, A. M. Galper, V. G. Kirillov-Ugryumov, B. I. Lucknov, Yu. V. Ozerov, I. L. Rozental, and E. M. Shermanzon, Proc. 11th ICRC, Budapest 29, 127 (1970).

    Google Scholar 

  4. C. E. Fichtel, R. C. Hartman, D. A. Kniffen, D. J. Thompson, and G. F. Bignami, Astrophys. J. 198, 163 (1975).

    Article  ADS  Google Scholar 

  5. B. N. Swanenburg, K. Bennett, G. F. Bignami, R. Buccheri, et al., Astrophys. J. Lett. 243, L69 (1981).

    Google Scholar 

  6. V. Akimov, V. Balebanov, A. Belaousov, I. Blochintsev, et al., Space Science Reviews 49, 111 (1988).

    ADS  Google Scholar 

  7. G. Kanbach, D. L. Bertsch, A. Favale, C. E. Fichtel, et al., Space Science Review 49, 69 (1988).

    ADS  Google Scholar 

  8. M. Tavani, G. Barbiellini, A. Argan, F. Boffelli, et al., Astron. Astrophys. 502, 995 (2009).

    Article  ADS  Google Scholar 

  9. W. B. Atwood, A. A. Abdo, M. Ackermann, W. Althouse, et al., Astrophys. J. 697, 1071 (2009).

    Article  ADS  Google Scholar 

  10. S. Torii for the CALET Collaboration, PoS(ICRC2015)581.

  11. F. Gargano on behalf of DAMPE Collaboration, ar**v:1701.05046 (2017).

  12. A. A. Abdo, M. Ackermann, M. Ajello, A. Allafort, et al., Astrophys. J. Supp. Ser. 188, 405 (2010).

    Article  ADS  Google Scholar 

  13. P. L. Nolan, A. A. Abdo, M. Ackermann, M. Ajello, et al., Astrophys. J. Supp. Ser. 199, 31 (2012).

    Article  ADS  Google Scholar 

  14. F. Acero, M. Ackermann, M. Ajello, A. Albert, et al., Astrophys. J. Supp. Ser. 218, 23 (2015).

    Article  ADS  Google Scholar 

  15. M. Ackermann, M. Ajello, A. Allafort, W. B. Atwood, et al., Astrophys. J. Supp. Ser. 209, 1 (2013).

    Article  ADS  Google Scholar 

  16. M. Ackermann, M. Ajello, W. B. Atwood, L. Baldini, et al., Astrophys. J. Supp. Ser. 222, 1 (2016).

    Article  ADS  Google Scholar 

  17. M. Ajello, W. B. Atwood, L. Baldini, J. Ballet, et al., ar**v:1702.00664 (2017).

    Google Scholar 

  18. R. Buhler, ar**v:1509.00012 (2015).

    Google Scholar 

  19. R. E. Ong, Adv. Space Res. 53, 1483 (2014).

    Article  ADS  Google Scholar 

  20. D. Mazin, D. Tescaro, M. Garczarczyk, G. Giavitto, J. Sitarek, for the MAGIC Collaboration, ar**v:1410.5073 (2014).

    Google Scholar 

  21. A. Balzer, M. Fußling, M. Gajdus, D. Göring, A. Lopatin, M. de Naurois, S. Schlenker, U. Schwanke, and C. Stegmann, ar**v:1311.3486 (2013).

    Google Scholar 

  22. H.E.S.S. Collaboration, The H.E.S.S.Galactic plane survey, ar**v:1804.02432 (2018).

    Book  Google Scholar 

  23. CTA Consortium, Experimental Astronomy 32, 193 (2011).

    Article  ADS  Google Scholar 

  24. G. Bertone, Particle dark matter—observations, models and searches (Cambridge Univ. Press, 2010).

    Book  MATH  Google Scholar 

  25. G. Bertone, C. B. Jackson, G. Shaughnessy, M. P. Tait Tim, and A. Vallinotto, ar**v:1009.5107 (2010).

    Google Scholar 

  26. D. Nekrassov, for the H.E.S.S. Collaboration, ar**v:1106.2752 (2011).

    Google Scholar 

  27. V.A. Dogiel, M. I. Fradkin, L.V. Kurnosova, L. A. Razorenov, M. A. Rusakovich, and N. P. Topchiev, Space Sci. Rev. 49, 215 (1988).

    ADS  Google Scholar 

  28. A. M. Galper, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, et al., Adv. Space Res. 51, 297 (2013).

    Article  ADS  Google Scholar 

  29. A. M. Galper, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, et al., AIP Conf. Proc. 1516, 288 (2013).

    Article  ADS  Google Scholar 

  30. N. P. Topchiev, A.M. Galper, V. Bonvicini, O. Adriani, et al., Bull. RAS. Physics 79, 417 (2015).

    Google Scholar 

  31. N. P. Topchiev, A.M. Galper, V. Bonvicini, O. Adriani, et al., Journal of Phys. Conf. Ser. 675, 032009 (2016).

    Article  Google Scholar 

  32. N. P. Topchiev, A.M. Galper, V. Bonvicini, O. Adriani, et al., Journal of Phys. Conf. Ser. 798, 012011 (2017).

    Article  Google Scholar 

  33. S. Westerhoff, Adv. Space Res. 53, 1492 (2014).

    Article  ADS  Google Scholar 

  34. K. Abazajian and M. Kaplinghat, Phys. Rev. D 86, 083511 (2012).

    Article  ADS  Google Scholar 

  35. R. Bartels, S. Krishnamurthy, and C. Weniger, ar**v:1506.05104 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Galper.

Additional information

The article is published in the original.

Paper presented at the Third Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus on April 23–27, 2018. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galper, A.M., Topchiev, N.P. & Yurkin, Y.T. GAMMA-400 Project. Astron. Rep. 62, 882–889 (2018). https://doi.org/10.1134/S1063772918120223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772918120223

Navigation