Log in

The Effect of the Step Height on the Wall Pressure Fluctuations near Its Side Edge in the Turbulent Boundary Layer

  • ATMOSPHERIC AND AEROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Wall pressure fluctuations in a turbulent flow are a source of noise and vibrations in elastic structures immersed in a flow. This paper presents the results of an experimental study on the effect produced by the height of a step on the spatiotemporal structure of wall pressure fluctuations in the vicinity of its side edge in the turbulent boundary layer. Measurements were performed in a subsonic low-noise wind tunnel of the Moscow Complex of the Zhukovsky Central Aerohydrodynamic Institute. The height of a step was varied from 3 to 17% of the incident-boundary-layer thickness. It has been shown that the area of the most intensive pressure fluctuations is located near the frontal side corner of the step. The characteristic Strouhal number determining the spectra of pressure fluctuations behind the leading edge of the step was established. An essential effect of the step height on the spatiotemporal structure of the pressure field in the vicinity of the side edge was shown. The obtained results evidence the existence of a strong correlation with the field of pressure fluctuations in the incident turbulent boundary layer in the case of steps with a small height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. B. M. Efimtsov, Akust. Zh. 28 (4), 491 (1982).

    Google Scholar 

  2. B. M. Efimtsov, Akust. Zh. 30 (1), 58 (1984).

    ADS  Google Scholar 

  3. A. V. Smol’yakov and V. M. Tkachenko, Akust. Zh. 36 (6), 1199 (1991).

    ADS  Google Scholar 

  4. M. S. Howe, J. Acoust. Soc. Am. 95, 1041 (1991).

    Article  ADS  Google Scholar 

  5. A. Ya. Zverev and B. M. Efimtsov, Acoust. Phys. 58 (4), 420 (2012).

    Article  ADS  Google Scholar 

  6. S. Haxter and C. Spehr, J. Sound Vib. 390, 86 (2017).

  7. W. K. Blake, Mechanics of Flow-Induced Sound and Vibration, Vol. 2: Complex Flow-Structure Interactions, 2nd ed. (Acad. Press, 2017).

    Google Scholar 

  8. A. Yu. Golubev, E. B. Kudashev, and L. R. Yablonik, Turbulent Pulsations in Acoustics and Aerohydrodynamics (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  9. E. B. Kudashev and L. R. Yablonik, Acoust. Phys. 67 (6), 631 (2021).

    Article  ADS  Google Scholar 

  10. Flinovia: Flow Induced Noise and Vibration Issues and Aspects-III, Ed. by E. Ciappi, S. De Rosa, F. Franco, S. A. Hambric, R. C. K. Leung, V. Clair, L. Maxit, and N. Totaro, (Springer Nature, 2021). https://doi.org/10.1007/978-3-030-64807-7

    Book  Google Scholar 

  11. M. Awasthi, W. J. Devenport, S. A. L. Glegg, and J. B. Forest, J. Fluid Mech. 756, 384 (2014).

    Article  ADS  Google Scholar 

  12. T. M. Farabee and M. J. Casarella, ASME J. Vib. Acoust. Stress Reliab. Des. 108, 301 (1986).

    Article  Google Scholar 

  13. B. M. Efimtsov, N. M. Kozlov, S. V. Kravchenko, and A. O. Andersson, in Proc. 5th AIAA/CEAS Aeroacoustics Conf. and Exhibition (Bellevue, WA, 1999), Paper No. AIAA 99-1964.

  14. B. M. Efimtsov, N. M. Kozlov, S. V. Kravchenko, and A. O. Andersson, in Proc. 6th Aeroacoustics Conf. and Exhibition (Lahaina, HI, 2000), Paper No. AIAA 2000-2053.

  15. I. Lee and H. J. Sung, J. Fluid Mech. 463, 377 (2002).

    Article  ADS  Google Scholar 

  16. J. F. Largeau and V. Moriniere, Exp. Fluids 42, 21 (2007).

    Article  Google Scholar 

  17. R. Camussi, M. Felli, F. Pereira, G. Aloisio, and A. Di Marco, Phys. Fluids 20 (7), 75113 (2008).

    Article  Google Scholar 

  18. M. Ji and M. Wang, J. Fluid Mech. 712, 471 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  19. V. N. Bibko and A. Yu. Golubev, Acoust. Phys. 60 (5), 521 (2014).

    Article  ADS  Google Scholar 

  20. A. Yu. Golubev and S. V. Kuznetsov, Fluid Dyn. 53 (6), 786 (2018).

    Article  ADS  Google Scholar 

  21. M. Awasthi, W. J. Devenport, W. N. Alexander, and S. A. L. Glegg, AIAA J. 57 (3), 1237 (2019).

    Article  ADS  Google Scholar 

  22. A. Golubev and S. Kuznetsov, AIAA J. 58 (10), 4595 (2020).

    Article  ADS  Google Scholar 

  23. D. J. J. Leclercq, M. C. Jacob, A. Louisot, and C. Talotte, in Proc. 7th AIAA/CEAS Aeroacoustics Conf. and Exhibition (Maastricht, 2001), Paper No. AIAA 2001-2249.

  24. A. Yu. Golubev and B. M. Efimtsov, Fluid Dyn. 50 (1), 50 (2015).

    Article  ADS  Google Scholar 

  25. A. Yu. Golubev and B. M. Efimtsov, Uch. Zap. TsAGI 46 (1), 30 (2015).

    Google Scholar 

  26. A. Yu. Golubev, Acoust. Phys. 64 (1), 64 (2018).

    Article  ADS  Google Scholar 

  27. D. S. Pearson, P. J. Goulart, and B. Ganapathisubramani, J. Fluid Mech. 724, 284 (2013).

    Article  ADS  Google Scholar 

  28. A. Graziani, F. Kerherve, R. J. Martinuzzi, and L. Keirsbulck, Exp. Fluids 59 (154), 1 (2018).

    Article  Google Scholar 

  29. V. Fang and M. F. Tachie, J. Fluid Mech. 892, A40-1-30 (2020).

  30. C. Chandrsuda and P. Bradshaw, J. Fluid Mech. 110, 171 (1981).

    Article  ADS  Google Scholar 

  31. R. L. Simpson, M. Ghodbane, and B. E. McGrath, J. Fluid Mech. 177, 167 (1987).

    Article  ADS  Google Scholar 

  32. M. Kiya and K. Sasaki, J. Fluid Mech. 137, 83 (1983).

    Article  ADS  Google Scholar 

  33. S. Haxter, J. Brouwer, J. Sesterhenn, and C. Spehr, J. Sound Vib. 402, 85 (2017).

Download references

Funding

This study was financially supported by the Russian Scientific Foundation, project no. 21-71-30016. The well-established method for measuring pressure pulsations suggests the use in the future on the basis of the TsAGI FAU “Silenced chamber with flow AK-2”, modernized with the support of the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-15-2022-1036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kuznetsov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.V., Golubev, A.Y. The Effect of the Step Height on the Wall Pressure Fluctuations near Its Side Edge in the Turbulent Boundary Layer. Acoust. Phys. 69, 220–227 (2023). https://doi.org/10.1134/S1063771022060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022060082

Keywords:

Navigation