Log in

MEMS Switch Based on a Cantilever with Increased Contact Force

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

MEMS switches are of significant interest for promising radio-electronic systems, but have not yet found widespread use due to the low reliability of microcontacts. The switch develops a low contact force, which results in high and unstable contact resistance. The force is usually increased by using electrodes with complex shapes and large areas, but a simple and compact configuration is preferable. This study presents a switch based on a 50-µm-long cantilever. For the first time, a method for selecting the vertical dimensions of the product is described, increasing the contact force to values in excess of 100 μN, necessary for reliable operation of the contacts. Test samples are manufactured and tested, and the performance characteristics are compared with the calculation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Rebeiz, G.M., Patel, C.D., Han, S.K., Ko, Ch.-H., and Ho, K.M.J., The search for a reliable MEMS switch, IEEE Microwave Mag., 2013, vol. 14, no. 1, pp. 57–67. https://doi.org/10.1109/mmm.2012.2226540

    Article  Google Scholar 

  2. Shekhar, S., Vinoy, K.J., and Ananthasuresh, G.K., Low-voltage high-reliability MEMS switch for millimeter wave 5G applications, J. Micromech. Microeng., 2018, vol. 28, no. 7, p. 075012. https://doi.org/10.1088/1361-6439/aaba3e

    Article  ADS  CAS  Google Scholar 

  3. Haider, N., Caratelli, D., and Yarovoy, A.G., Recent developments in reconfigurable and multiband antenna technology, Int. J. Antennas Propag., 2013, vol. 2013, p. 869170. https://doi.org/10.1155/2013/869170

    Article  Google Scholar 

  4. Daneshmand, M. and Mansour, R.R., RF MEMS satellite switch matrices, IEEE Microwave Mag., 2011, vol. 12, no. 5, pp. 92–109. https://doi.org/10.1109/mmm.2011.941417

    Article  Google Scholar 

  5. Kurmendra, K.R., A review on RF micro-electro-mechanical-systems (MEMS) switch for radio frequency applications, Microsyst. Technol., 2021, vol. 27, no. 7, pp. 2525–2542. https://doi.org/10.1007/s00542-020-05025-y

    Article  CAS  Google Scholar 

  6. Petersen, K.E., Dynamic micromechanics on silicon: Techniques and devices, IEEE Trans. Electron Devices, 1978, vol. 25, no. 10, pp. 1241–1250. https://doi.org/10.1109/t-ed.1978.19259

    Article  ADS  Google Scholar 

  7. Dey, S., Koul, Sh.K., Poddar, A.K., and Rohde, U.L., Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures, J. Micromech. Microeng., 2017, vol. 27, no. 10, p. 105010. https://doi.org/10.1088/1361-6439/aa8071

    Article  ADS  CAS  Google Scholar 

  8. Park, J.-H., Lee, S., Kim, J.-M., Kim, H.-T., Kwon, Y., and Kim, Y.-K., Reconfigurable millimeter-wave filters using CPW-based periodic structures with novel multiple-contact MEMS switches, J. Microelectromech. Syst, 2005, vol. 14, pp. 456–463. https://doi.org/10.1109/JMEMS.2005.844849

    Article  Google Scholar 

  9. Li, M., Zhang, Yi., Zhao, Yi., Xue, P., and Wu, Q., Design and fabrication of a 4-bit RF MEMS attenuator with a high attenuation accuracy, Analog Integr. Circuits Signal Process., 2020, vol. 102, no. 3, pp. 617–624. https://doi.org/10.1007/s10470-020-01608-x

    Article  Google Scholar 

  10. Heredia, J., Ribo, M., Pradell, L., Wipf, S.T., Goritz, A., Wietstruck, M., Wipf, C., and Kaynak, M., A 125–143-GHz frequency-reconfigurable BiCMOS compact LNA using a single RF-MEMS switch, IEEE Microwave Wireless Compon. Lett., 2019, vol. 29, no. 5, pp. 339–341. https://doi.org/10.1109/lmwc.2019.2906595

    Article  Google Scholar 

  11. Saleem, M.M. and Nawaz, H., A systematic review of reliability issues in RF-MEMS switches, Micro Nanosyst., 2019, vol. 11, no. 1, pp. 11–33. https://doi.org/10.2174/1876402911666190204113856

    Article  CAS  Google Scholar 

  12. Huang, Yu., Sai Sarathi Vasan, A., Doraiswami, R., Osterman, M., and Pecht, M., MEMS reliability review, IEEE Trans. Device Mater. Reliab., 2012, vol. 12, no. 2, pp. 482–493. https://doi.org/10.1109/tdmr.2012.2191291

    Article  Google Scholar 

  13. Basu, A., Adams, G.G., and McGruer, N.E., A review of micro-contact physics, materials, and failure mechanisms in direct-contact RF MEMS switches, J. Micromech. Microeng., 2016, vol. 26, no. 10, p. 104004. https://doi.org/10.1088/0960-1317/26/10/104004

    Article  ADS  CAS  Google Scholar 

  14. Ma, Q., Tran, Q., Chou, Ts.-K.A., Heck, J., Bar, H., Kant, R., and Rao, V., Metal contact reliability of RF MEMS switches, Proc. SPIE, 2007, vol. 6463, p. 646305. https://doi.org/10.1117/12.702177

    Article  CAS  Google Scholar 

  15. Chen, L., Guo, Z.J., Joshi, N., Eid, H., Adams, G.G., and McGruer, N.E., An improved SPM-based contact tester for the study of microcontacts, J. Micromech. Microeng., 2012, vol. 22, no. 4, p. 045017. https://doi.org/10.1088/0960-1317/22/4/045017

    Article  ADS  Google Scholar 

  16. Coutu, R.A. and Tomer, D., Micro-contacts testing using a micro-force sensor compatible with biological systems, Int. J. Biosens. Bioelectron., 2017, vol. 3, p. 52. https://doi.org/10.15406/ijbsbe.2017.03.00052

    Article  Google Scholar 

  17. Blondy, P., Pothier, A., Stefanini, R., Gauvin, J., Passerieux, D., Vendier, O., and Courtade, F., Development of an all-metal large contact force reliable RF-MEMS relay for space applications, 2012 42nd Eur. Microwave Conf., Amsterdam, 2012, IEEE, 2012, pp. 184–185. https://doi.org/10.23919/eumc.2012.6459332

  18. Patel, Ch.D. and Rebeiz, G.M., A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC–40-GHz applications, IEEE Trans. Microwave Theory Tech., 2012, vol. 60, no. 10, pp. 3096–3112. https://doi.org/10.1109/tmtt.2012.2211888

    Article  ADS  Google Scholar 

  19. Sedaghat-Pisheh, H. and Rebeiz, G.M., Variable spring constant, high contact force RF MEMS switch, 2010 IEEE MTT-S Int. Microwave Symp., Anaheim, Calif., 2010, IEEE, 2010, pp. 23–28. https://doi.org/10.1109/mwsym.2010.5517083

  20. Stefanini, R., Chatras, M., Blondy, P., and Rebeiz, G.M., Miniature MEMS switches for RF applications, J. Microelectromech. Syst., 2011, vol. 20, no. 6, pp. 1324–1335. https://doi.org/10.1109/jmems.2011.2170822

    Article  Google Scholar 

  21. Liu, B., Lv, Z., He, X., Liu, M., Hao, Yi., and Li, Z., Improving performance of the metal-to-metal contact RF MEMS switch with a Pt–Au microspring contact design, J. Micromech. Microeng., 2011, vol. 21, no. 6, p. 065038. https://doi.org/10.1088/0960-1317/21/6/065038

    Article  ADS  CAS  Google Scholar 

  22. Belozerov, I.A. and Uvarov, I.V., Performance optimization of the cantilever-based MEMS switch, Nauchn.-Tekh. Vedomosti S.-Peterb. Gos. Politekh. Univ. Fiziko-Mat. Nauki, 2022, vol. 15, no. 3.2, pp. 140–144. https://doi.org/10.18721/JPM.153.226

  23. Rebeiz, G.M., RF MEMS: Theory, Design, and Technology, Hoboken, N.J.: Wiley, 2003. https://doi.org/10.1002/0471225282

    Book  Google Scholar 

  24. Uvarov, I.V. and Kupriyanov, A.N., Investigation of characteristics of electrostatically actuated MEMS switch with an active contact breaking mechanism, Russ. Microelectron., 2018, vol. 47, no. 5, pp. 307–316. https://doi.org/10.1134/s1063739718050086

    Article  Google Scholar 

  25. Uvarov, I.V. and Kupriyanov, A.N., Stiction-protected MEMS switch with low actuation voltage, Microsyst. Technol., 2019, vol. 25, no. 8, pp. 3243–3251. https://doi.org/10.1007/s00542-018-4188-4

    Article  Google Scholar 

  26. Uvarov, I.V., Marukhin, N.V., and Naumov, V.V., Contact resistance and lifecycle of a single- and multiple-contact MEMS switch, Microsyst. Technol., 2019, vol. 25, no. 11, pp. 4135–4141. https://doi.org/10.1007/s00542-018-4279-2

    Article  CAS  Google Scholar 

  27. Do, C., Lishchynska, M., Delane, K., Fitzgerald, P., Goggin, R., and Hill, M., Model-based analysis of switch degradation effects during lifetime testing, IEEE 25th Int. Conf. on Micro Electro Mechanical Systems (MEMS), Paris, 2012, IEEE, 2012, pp. 460–463. https://doi.org/10.1109/MEMSYS.2012.6170169

  28. Babichev, A.P., Babushkina, N.A., Bratkovskii, A.M., et al., Fizicheskie velichiny. Spravochnik (Physical Quantities: Reference Book), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  29. Uvarov, I.V., Naumov, V.V., Kupriyanov, A.N., Izyumov, M.O., and Amirov, I.I., A seesaw-type MEMS switch with Pt and Ru contacts, Nauchn.-Tekh. Vedomosti S.-Peterb. Gos. Politekh. Univ. Fiziko-Mat. Nauki, 2022, vol. 15, no. 3, pp. 335–339. https://doi.org/10.18721/JPM.153.366

    Article  Google Scholar 

  30. Czaplewski, D.A., Nordquist, C.D., Dyck, C.W., Patrizi, G.A., Kraus, G.M., and Cowan, W.D., Lifetime limitations of ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts, J. Micromech. Microeng., 2012, vol. 22, no. 10, p. 105005. https://doi.org/10.1088/0960-1317/22/10/105005

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of a state assignment of Valiev Institute of Physics and Technology, Russian Academy of Sciences on topic no. FFNN-2022-0017, using the equipment of the Center for Collective Use “Diagnostics of Micro- and Nanostructures.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Belozerov or I. V. Uvarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belozerov, I.A., Uvarov, I.V. MEMS Switch Based on a Cantilever with Increased Contact Force. Russ Microelectron 52, 475–482 (2023). https://doi.org/10.1134/S1063739723700774

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723700774

Keywords:

Navigation