Log in

Influence of the Passivation Layers on the Self-Heating Effect in the Double Channel AlGaN/GaN MOS-HEMT Device

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

In this paper, a Two-Channel AlGaN/GaN structure of Metal-Oxide Semiconductor High-Electron Mobility Transistors (MOS-HEMTs) with TiO2 gate dielectric is presented. Also, we have examined its electrical characteristics, such as band structure, the electric field, and electric potential. The proposed device’s performance is always affected by the effects of self-heating. The performance of the proposed transistor has been evaluated by considering thermal models in Silvaco TCAD software. The simulation results show that the self-heating has significant effects on the response of the proposed device. We conclude that the drain current at VDS = 2 V is reduced by about 16%. Also, the mobility of electrons in both created channels of the structure can significantly reduce (nearly 34%). Therefore, it can be found that the self-heating effect leads to the degradation of the proposed transistor performance. In this paper, the self-heating effects of the MOS-HEMT transistor are reduced by using 6H-SiC material as a passive layer and placing a field plate near the gate. The results confirm that the breakdown voltage and drain current have increased by more than 78 and 20%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Sheppard, S., Doverspike, K., Pribble, W.L., Allen, S.T., Palmour, J.W., Kehias, L.T., and Jenkins, T.J., High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates, IEEE Electron Device Lett., 1999, vol. 20, no. 4, pp. 161–163. https://doi.org/10.1109/55.753753

    Article  Google Scholar 

  2. Mishra, U.K., Wu, Yi-F., Keller, B.P., and Denbaars, S.P., GaN microwave electronics, IEEE Trans. Microwave Theory Tech., 1998, vol. 46, no. 6, pp. 756–761. https://doi.org/10.1109/22.681197

    Article  Google Scholar 

  3. Santhakumar, R., Thibeault, B., Higashiwaki, M., Keller, S., Chen, Zh., Mishra, U.K., and York, R.A., Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs, IEEE Trans. Microwave Theory Tech., 2011, vol. 59, no. 8, pp. 2059–2063. https://doi.org/10.1109/TMTT.2011.2144996

    Article  Google Scholar 

  4. Touati, Z-e., Hamaizia, Z., and Messai, Z., DC and RF characteristics of AlGaN/GaN HEMT and MOS-HEMT, 4th Int. Conf. on Electrical Engineering (ICEE), Boumerdes, Algeria, 2015, IEEE, 2015, pp. 1–4. https://doi.org/10.1109/INTEE.2015.7416850

  5. Dong, Zh., Wang, J., Wen, C.P., Gong, D., Li, Yi., Yu, M., Hao, Yi., Xu, F., Shen, B., and Wang, Ya., High breakdown AlGaN/GaN MOSHEMT with thermal oxidized Ni/Ti as gate insulator, Solid-State Electron., 2010, vol. 54, no. 11, pp. 1339–1342. https://doi.org/10.1016/j.sse.2010.06.001

    Article  Google Scholar 

  6. Hu, Ch.-Ch., Lin, M.-S., Wu, Ts.-Yi, Adriyanto, F., Sze, P.-W., Wu, Ch.-L., and Wang, Ye.-H., A-lGaN/GaN metal–oxide–semiconductor high-electron mobility transistor with liquid-phase-deposited barium-doped TiO2 as a gate dielectric, IEEE Trans. Electron Devices, 2011, vol. 59, no. 1, pp. 121–127. https://doi.org/10.1109/TED.2011.2171690

    Article  Google Scholar 

  7. Lee, Ch.-S., Liao, Yu-H., Chou, B.-Yi, Liu, H.-Yi., and Hsu, W.-Ch., Composite HfO2/Al2O3-dielectric AlGaAs/InGaAs MOS-HEMTs by using RF sputtering/ozone water oxidation, Superlattices Microstruct., 2014, vol. 72, pp. 194–203. https://doi.org/10.1016/j.spmi.2014.04.016

    Article  Google Scholar 

  8. Hsu, Ch.-H., Shih, W.-Ch., Lin, Yu.-Ch., Hsu, H.-T., Hsu, H.-H., Huang, Yu-X., Lin, T.-W., Wu, Ch.-H., Wu, W.-H., and Maa, J.-Sh., Improved linearity and reliability in GaN metal–oxide–semiconductor high-electron-mobility transistors using nanolaminate La2O3/SiO2 gate dielectric, Jpn. J. Appl. Phys., 2016, vol. 55, no. 4S, p. 04EG04. https://doi.org/10.7567/JJAP.55.04EG04

    Article  Google Scholar 

  9. Jena, K., Swain, R., and Lenka, T.R., Modeling and comparative analysis of DC characteristics of AlGaN/GaN HEMT and MOSHEMT devices, Int. J. Numer. Modell.: Electron. Networks, Devices and Fields, 2016, vol. 29, no. 1, pp. 83–92. https://doi.org/10.1002/jnm.2048

    Article  Google Scholar 

  10. Sandeep, V., Pravin, J.Ch., Babu, A.R., and Prajoon, P., Impact of AlInN back-barrier over AlGaN/GaN MOS-HEMT with HfO2 dielectric using cubic spline interpolation technique, IEEE Trans. Electron Devices, 2020, vol. 67, no. 9, pp. 3558–3563. https://doi.org/10.1109/TED.2020.3010710

    Article  Google Scholar 

  11. Jia, J.-J., Lin, Ch.-Ch., and Lee, Ch.-T., Scaling effect in gate-recessed AlGaN/GaN fin-nanochannel array MOSHEMTs, IEEE Access, 2020, vol. 8, pp. 158941–158946. https://doi.org/10.1109/ACCESS.2020.3020316

    Article  Google Scholar 

  12. Vadizadeh, M., Fallahnejad, M., Shaveisi, M., Ejlali, R., and Bajelan, F., Double gate double-channel A-lGaN/GaN MOS HEMT and its applications to LNA with Sub-1 dB noise figure, Silicon, 2022, vol. 15, pp. 1093–1103. https://doi.org/10.1007/s12633-022-02083-x

    Article  Google Scholar 

  13. Chang, Ya.-H., Wang, J.-J., and Shen, G.-L., Improving off-state breakdown voltage of a double-channel AlGaN/GaN HEMT with air-bridge field plate and slant field plate, Solid State Electron. Lett., 2020, vol. 2, pp. 92–97. https://doi.org/10.1016/j.ssel.2020.10.002

    Article  Google Scholar 

  14. Chou, B.-Yi, Lee, Ch.-S., Yang, Ch.-L., Hsu, W.-Ch., Liu, H.-Yi., Chiang, M.-H., Sun, W.-Ch., Wei, S.-Ye., and Yu, Sh.-M., TiO2-dielectric AlGaN/GaN/Si metal–oxide–semiconductor high electron mobility transistors by using nonvacuum ultrasonic spray pyrolysis deposition, IEEE Electron Device Lett., 2014, vol. 35, no. 11, pp. 1091–1093. https://doi.org/10.1109/LED.2014.2354643

    Article  Google Scholar 

  15. Zine-eddine, T., Zahra, H., and Zitouni, M., Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications, J. Sci.: Adv. Mater. Devices, 2019, vol. 4, no. 1, pp. 180–187. https://doi.org/10.1016/j.jsamd.2019.01.001

    Article  Google Scholar 

  16. Manual, A.U.S. Device Simulation Software Version 5.19, Santa Clara, Calif.: Silvaco Int., 2020.

  17. Vurgaftman, I., Meyer, J.R., and Ram-Mohan, L.R., Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys., 2001, vol. 89, no. 11, pp. 5815–5875. https://doi.org/10.1063/1.1368156

    Article  Google Scholar 

  18. Angerer, H., Brunner, D., Freudenberg, F., Ambacher, O., Stutzmann, M., Höpler, R., Metzger, T., Born, E., Dollinger, G., Bergmaier, A., Karsch, S., and Körner, H.-J., Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films, Appl. Phys. Lett., 1997, vol. 71, no. 11, pp. 1504–1506. https://doi.org/10.1063/1.119949

    Article  Google Scholar 

  19. Piprek, J., Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, Amsterdam: Academic, 2013. https://doi.org/10.1016/C2009-0-22633-X

    Book  Google Scholar 

  20. Ambacher, O., Foutz, B., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Sierakowski, A.J., Schaff, W.J., Eastman, L.F., Dimitrov, R., Mitchell, A., and Stutzmann, M., Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, J. Appl. Phys., 2000, vol. 87, no. 1, pp. 334–344. https://doi.org/10.1063/1.371866

    Article  Google Scholar 

  21. Yue, Y., Hu, Z., Guo, J., Sensale-Rodriguez, B., Li, G., Wang, R., Faria, F., Song, B., Gao, X., Guo, Sh., Kosel, T., Snider, G., Fay, P., Jena, D., and **ng, H.G., Ultrascaled InAlN/GaN high electron mobility transistors with cutoff frequency of 400 GHz, Jpn. J. Appl. Phys., 2013, vol. 52, no. 8S, p. 08JN14. https://doi.org/10.7567/JJAP.52.08JN14

    Article  Google Scholar 

  22. Baca, A.G., Armstrong, A.W., Allerman, A.A., Douglas, E.A., Sanchez, C.A., King, M.P., Coltrin, M.E., Fortune, T.R., and Kaplar, R.J., An AlN/Al0.85Ga0.15N high electron mobility transistor, Appl. Phys. Lett., 2016, vol. 109, no. 3, p. 033509. https://doi.org/10.1063/1.4959179

    Article  Google Scholar 

  23. Murugapandiyan, P., Mohanbabu, A., Lakshmi, V.R., Ramakrishnan, V.N., Varghese, A., Wasim, M., Baskaran, S., Kumar, R.S., and Janakiraman, V., Performance analysis of HfO2/InAlN/AlN/GaN HEMT with AlN buffer layer for high power microwave applications, J. Sci.: Adv. Mater. Devices, 2020, vol. 5, no. 2, pp. 192–198. https://doi.org/10.1016/j.jsamd.2020.04.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Shaveisi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryam Shaveisi, Peiman Aliparast Influence of the Passivation Layers on the Self-Heating Effect in the Double Channel AlGaN/GaN MOS-HEMT Device. Russ Microelectron 52, 112–118 (2023). https://doi.org/10.1134/S1063739723700233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723700233

Keywords:

Navigation