Log in

Investigation of Low Energy Electron Irradiated SiO2 Based MOS Devices by Capacitance-Voltage and Thermally Stimulated Current Techniques

  • DIAGNOSTICS
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Silicon oxide based and aluminum gated MOS structures fabricated on n-type silicon are investigated after irradiation with low energy electrons in scanning electron microscope. The thermally stimulated current (TSC) technique in the temperature range from 80 K to 320 K revealed a number of the electron beam induced charge traps. With the help of the capacitance-voltage method, the traps revealed by the TSC were identified by their location (within dielectric, semiconductor or at the interface) and by their nature (trap for electrons or for holes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Raghavan, N., Pey, K.L., and Shubhakar, K., High-k dielectric breakdown in nanoscale logic devices- Scientific insight and technology impact, Microelectron. Reliab., 2014, vol. 54, no. 5, pp. 847–860. https://doi.org/10.1016/j.microrel.2014.02.013

    Article  Google Scholar 

  2. Nawaz, M., On the evaluation of gate dielectrics for 4H-SiC based power MOSFETs, Act. Passive Electron. Compon., 2015, vol. 2015, p. 651527. https://doi.org/10.1155/2015/651527

    Article  Google Scholar 

  3. Ao, J., Nakatani, K., Sogawa, Y., Akamatsu, S., Kim, Y.H., Miyashita, T., Motoyama, S., and Ohno, Y., GaN MOSFET with a gate SiO2 insulator deposited by silane-based plasma-enhanced chemical vapor deposition, Phys. Status Solidi (c), 2011, vol. 8, no. 2, pp. 457–460. https://doi.org/10.1002/pssc.201000489

    Article  Google Scholar 

  4. Nicollian, E.H., Surface passivation of semiconductors, J. Vac. Sci. Technol., 1971, vol. 8, no. 5, pp. S39–S49. https://doi.org/10.1116/1.1316388

    Article  Google Scholar 

  5. Glunz, S.W. and Feldmann, F., SiO2 surface passivation layers—A key technology for silicon solar cells, Sol. Energy Mater. Sol. Cells, 2018, vol. 185, pp. 260–269. https://doi.org/10.1016/j.solmat.2018.04.029

    Article  Google Scholar 

  6. Kim, T., Park, T., and Lim, S., Improvement of Si3N4/SiO2 etching selectivity through the passivation of SiO2 surface in aromatic carboxylic acid-added H3P-O4 solutions for the 3D NAND integration, Appl. Surf. Sci., 2023, vol. 619, p. 156758. https://doi.org/10.1016/j.apsusc.2023.156758

    Article  Google Scholar 

  7. Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Jambois, O., Labbe, C., Garrido, B., Rizk, R., and Kenyon, A.J., Resistive switching in silicon suboxide films, J. Appl. Phys., 2012, vol. 111, no. 7, p. 74507. https://doi.org/10.1063/1.3701581

    Article  Google Scholar 

  8. Dubonos, S.V., Gaifullin, B.N., Raith, H.F., Svintsov, A.A., and Zaitsev, S.I., Evaluation, verification and error determination of proximity parameters α, β and ν in electron beam lithography, Microelectron. Eng., 1993, vol. 21, nos. 1–4, pp. 293–296. https://doi.org/10.1016/0167-9317(93)90076-H

    Article  Google Scholar 

  9. Koveshnikov, S., Knyazev, M., and Soltanovich, O., Generation, relaxation and annealing of Si/SiO2 charges induced by low-energy electron beam, J. Mater. Sci. Eng. B, 2021, vol. 274, p. 115487. https://doi.org/10.1016/j.mseb.2021.115487

    Article  Google Scholar 

  10. Chen, X.J., Barnaby, H.J., Schrimpf, R.D., Fleetwood, D.M., Pease, R.L., Platteter, D.G., and Dunham, G.W., Nature of interface defect buildup in gated bipolar devices under low dose rate irradiation, IEEE Trans. Nucl. Sci., 2006, vol. 53, no. 6, pp. 3649–3654. https://doi.org/10.1109/TNS.2006.885375

    Article  Google Scholar 

  11. Hakata, T., Ohyama, H., Simoen, E., Claeys, C., Miyahara, K., Kawamura, K., Ogita, Y., and Takami, Y., Degradation of MOSFETs on SIMOX by irradiation, J. Radioanal. Nucl. Chem., 1999, vol. 239, no. 2, pp. 357–360. https://doi.org/10.1007/BF02349511

    Article  Google Scholar 

  12. Blood, P. and Orton, J.W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron States, London: Academic, 1992.

    Google Scholar 

  13. Bernstein, G.H., Polchorek, S.W., Kamath, R., and Porod, W., Determination of fixed electron-beam-induced positive oxide charge, Scanning, 1992, vol. 14, no. 6, pp. 345–349. https://doi.org/10.1002/sca.4950140606

    Article  Google Scholar 

  14. Ravindra, N.M. and Zhao, J., Fowler–Nordheim tunneling in thin SiO2 films, Smart Mater. Struct., 1999, vol. 1, no. 3, pp. 197–201. https://doi.org/10.1088/0964-1726/1/3/002

    Article  Google Scholar 

  15. Lang, D.V., Deep level transient spectroscopy: A new method to characterize traps in semiconductors, J. Ap-pl. Phys., 1974, vol. 45, no. 7, pp. 3023–3032. https://doi.org/10.1063/1.1663719

    Article  Google Scholar 

Download references

Funding

The presented study is performed within the state task of IMT RAS no. 075-01304-23-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Aliasgari Renani or O. A. Soltanovich.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliasgari Renani, R., Soltanovich, O.A., Knyazev, M.A. et al. Investigation of Low Energy Electron Irradiated SiO2 Based MOS Devices by Capacitance-Voltage and Thermally Stimulated Current Techniques. Russ Microelectron 52 (Suppl 1), S274–S278 (2023). https://doi.org/10.1134/S1063739723600516

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600516

Keywords:

Navigation