Log in

Simulation of the Polarization-Resolved Spectra of VCSEL

  • QUANTUM INFORMATICS: COMMUNICATION
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

We present a new view at simulating the VCSEL spectrum based on stochastic version of the widely used SFM model [1]. In comparison to the existing results [2], our method provides not only wavelengths and relative linewidths of lasing spikes but also the full spectrum. We show that it captures all known features such as polarization switching [3], four-wave-mixing (FWM) spike [4], and relaxation oscillations [5].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. San Miguel, M., Feng, Q., and Moloney, J.V., Light-polarization dynamics in surface-emitting semiconductor lasers, Phys. Rev. A, 1995, vol. 52, no. 2, pp. 1728–1739. https://doi.org/10.1103/PhysRevA.52.1728

    Article  Google Scholar 

  2. Van Exter, M.P., Hendriks, R.F.M., and Woerdman, J.P., Physical insight into the polarization dynamics of semiconductor vertical-cavity lasers, Phys. Rev. A, 1998, vol. 57, no. 3, pp. 2080–2090. https://doi.org/10.1103/PhysRevA.57.2080

    Article  Google Scholar 

  3. Martin-Regalado, J., Prati, F., San, M.M., and Abraham, N.B., Polarization properties of vertical-cavity surface-emitting lasers, IEEE J. Quantum Electron., 1997, vol. 33, no. 5, pp. 765–783. https://doi.org/10.1109/3.572151

    Article  Google Scholar 

  4. Van Exter, M.P., Willemsen, M.B., and Woerdman, J.P., Polarization fluctuations in vertical-cavity semiconductor lasers, Phys. Rev. A, 1998, vol. 58, no. 5, pp. 4191–4205. https://doi.org/10.1103/PhysRevA.58.4191

    Article  Google Scholar 

  5. Van Exter, M.P., Hamel, W.A., Woerdman, J.P., and Zeijlmans, B.R.P., Spectral signature of relaxation oscillations in semiconductor lasers, IEEE J. Quantum Electron., 1992, vol. 28, no. 6, pp. 1470–1478. https://doi.org/10.1109/3.135299

    Article  Google Scholar 

  6. Markowski, K., Bojarczuk, J., Araszkiewicz, P., Ciftci, J., Ignaciuk, A., and Gaskz, M., High temperature measurement with low cost, VCSEL-based, interrogation system using femtosecond Bragg gratings, Sensors, 2022, vol. 22, no. 24, p. 9768. https://doi.org/10.3390/s22249768

    Article  Google Scholar 

  7. Zhang, G., Zeng, H., Tan, G., and Lin, Q., An integrated high-sensitivity VCSEL-based spin-exchange relaxation-free magnetometer with optical rotation detection, IEEE Sens. J., 2022, vol. 22, no. 8, pp. 7700–7708. https://doi.org/10.1109/JSEN.2022.3156814

    Article  Google Scholar 

  8. Yang, Y., Zhou, P., Mu, P., and Li, N., Time-delayed reservoir computing based on an optically pumped spin VCSEL for high-speed processing, Nonlinear Dyn., 2022, vol. 107, no. 3, pp. 2619–2632. https://doi.org/10.1007/s11071-021-07140-5

    Article  Google Scholar 

  9. Shakhovoy, R., Maksimova, E., Sharoglazova, V., Puplauskis, M., and Kurochkin, Y., Fast and compact VCSEL-based quantum random number generator, J. Phys.: Conf. Ser., 2021, vol. 1984, no. 1, p. 12005. https://doi.org/10.1088/1742-6596/1984/1/012005

    Article  Google Scholar 

  10. Quirce, A. and Valle, A., Random polarization switching in gain-switched VCSELs for quantum random number generation, Opt. Express, 2022, vol. 30, no. 7, pp. 10513–10527. https://doi.org/10.1364/OE.446838

    Article  Google Scholar 

  11. Bjerkan, L., Royset, A., Hafskjar, L., and Myhre, D., Measurement of laser parameters for simulation of high-speed fiberoptic systems, J. Lightwave Technol., 1996, vol. 14, no. 5, pp. 839–850. https://doi.org/10.1109/50.495166

    Article  Google Scholar 

  12. Perez, P., Valle, A., Noriega, I., and Pesquera, L., Measurement of the intrinsic parameters of single-mode VCSELs, J. Lightwave Technol., 2014, vol. 32, no. 8, pp. 1601–1607. https://doi.org/10.1109/JLT.2014.2308303

    Article  Google Scholar 

  13. Perez, P., Valle, A., and Pesquera, L., Polarization-resolved characterization of long-wavelength vertical-cavity surface-emitting laser parameters, J. Opt. Soc. Am. B, 2014, vol. 31, no. 11, pp. 2574–2580. https://doi.org/10.1364/JOSAB.31.002574

    Article  Google Scholar 

  14. Herrera, D.J., Kovanis, V., and Lester, L.F., Using transitional points in the optical injection locking behavior of a semiconductor laser to extract its dimensionless operating parameters, IEEE J. Sel. Top. Quantum Electron., 2022, vol. 28, no. 1, p. 1800109. https://doi.org/10.1109/JSTQE.2021.3075645

    Article  Google Scholar 

  15. Risken, H., Statistical properties of laser light, The Fokker-Planck Equation, Springer Series in Synergetics, vol. 18, Springer, 1996, pp. 374–413. https://doi.org/10.1007/978-3-642-61544-3_12

    Book  Google Scholar 

  16. Henry, C.H., Theory of the linewidth of semiconductor lasers, IEEE J. Quantum Electron., 1982, vol. 18, no. 2, pp. 259–264. https://doi.org/10.1109/JQE.1982.1071522

    Article  Google Scholar 

  17. Van Tartwijk, G.H.M. and Lenstra, D., Semiconductor lasers with optical injection and feedback, Quantum Semiclassical Opt.: J. Eur. Opt. Soc. Part B, 1995, vol. 7, no. 2, pp. 87–143. https://doi.org/10.1088/1355-5111/7/2/003

    Article  Google Scholar 

  18. Lang, R., Vahala, K., and Yariv, A., The effect of spatially dependent temperature and carrier fluctuations on noise in semiconductor lasers, IEEE J. Quantum Electron., 1985, vol. 21, no. 5, pp. 443–451. https://doi.org/10.1109/JQE.1985.1072677

    Article  Google Scholar 

  19. Kloeden, P.E. and Platen, E., Numerical Solution of Stochastic Differential Equations, Stochastic Modelling and Applied Probability, vol. 23, Berlin: Springer, 1992. https://doi.org/10.1007/978-3-662-12616-5

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation within the framework of the Strategic Academic Leadership Program “Priority 2030” (Strategic Project “Quantum Internet”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Dedkov or R. A. Shakhovoy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedkov, E.A., Kurochkin, V.L., Chizhevsky, V.N. et al. Simulation of the Polarization-Resolved Spectra of VCSEL. Russ Microelectron 52 (Suppl 1), S311–S316 (2023). https://doi.org/10.1134/S1063739723600498

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600498

Keywords:

Navigation