Log in

Quantum Mechanical Simulation of Polarization Switching in HfO2 Crystals

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Int this paper, we study the process of changing the polarization of hafnium oxide crystals in the orthorhombic phase associated with the gradual weakening of polarization effects in FeRAM elements based on thin films of hafnium oxide HfO2. To solve the problem, quantum mechanical calculations of the structure of orthorhombic hafnium oxide are performed, a possible way of crystal restructuring during a change in polarization when a voltage is applied is identified, and its optimization is carried out using the elastic band method. The values of the change in polarization and the energy barrier of the corresponding transition are obtained. The stability of this transition is studied. The results of a series of computational experiments using high-performance computing systems of hybrid architecture based on the Center for Collective Use at the Federal Research Center “Computer Science and Control” are presented. An analysis of the results shows that, despite the low energy barrier of the transition, the probability of a spontaneous change in polarization is low due to the impossibility of changing the polarization of an individual cell with no allowance for the effect of the polarizations of the neighboring cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Shaw, T.M., Trolier-McKinstry, S., and McIntyre, P.C., The properties of ferroelectric films at small dimensions, Annu. Rev. Mater. Sci., 2000, vol. 30, no. 1, pp. 263–298. https://doi.org/10.1146/annurev.matsci.30.1.263

    Article  ADS  CAS  Google Scholar 

  2. Nuraje, N. and Su, K., Perovskite ferroelectric nanomaterials, Nanoscale, 2013, vol. 5, no. 19, p. 8752. https://doi.org/10.1039/c3nr02543H

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Liu, H. and Yang, X., A brief review on perovskite multiferroics, Ferroelectrics, 2017, vol. 507, no. 1, pp. 69–85. https://doi.org/10.1080/00150193.2017.1283171

    Article  ADS  CAS  Google Scholar 

  4. Gao, W., Zhu, Yi., Wang, Ya., Yuan, G., and Liu, J.-M., A review of flexible perovskite oxide ferroelectric films and their application, J. Materiomics, 2020, vol. 6, no. 1, pp. 1–16. https://doi.org/10.1016/j.jmat.2019.11.001

    Article  Google Scholar 

  5. Schroeder, U., Park, M.H., Mikolajick, T., and Hwang, Ch.S., The fundamentals and applications of ferroelectric HfO2, Nat. Rev. Mater., 2022, vol. 7, no. 8, pp. 653–669. https://doi.org/10.1038/s41578-022-00431-2

    Article  ADS  Google Scholar 

  6. Park, M.H., Lee, Yo.H., Mikolajick, T., Schroeder, U., and Hwang, Ch.S., Review and perspective on ferroelectric HfO2-based thin films for memory applications, MRS Commun., 2018, vol. 8, no. 3, pp. 795–808. https://doi.org/10.1557/mrc.2018.175

    Article  CAS  Google Scholar 

  7. Mikolajick, T., Müller, S., Schenk, T., Yurchuk, E., Slesazeck, S., Schröder, U., Dünkel S., Flachowsky, S., van Bentum, R., Kolodinski, S., Polakowski, P., and Müller, J., Doped hafnium oxide–An enabler for ferroelectric field effect transistors, Adv. Sci. Technol., 2014, vol. 95, pp. 136–145. https://doi.org/10.4028/www.scientific.net/ast.95.136

  8. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A., Smogunov, A., Umari, P., and Wentzcovitch, R., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter., 2009, vol. 21, no. 39, p. 395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  9. Dal Corso, A., Pseudopotentials periodic table: From H to Pu, Comput. Mater. Sci., 2014, vol. 95, pp. 337–350. https://doi.org/10.1016/j.commatsci.2014.07.043

    Article  CAS  Google Scholar 

  10. Henkelman, G., Uberuaga, B.P., and Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys., 2000, vol. 113, no. 22, pp. 9901–9904. https://doi.org/10.1063/1.1329672

    Article  ADS  CAS  Google Scholar 

  11. Resta, R., Polarization as a Berry phase, Europhysics News, 1997, vol. 28, no. 1, pp. 18–20. https://doi.org/10.1007/s00770-997-0018-4

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the infrastructure of the Center for Collective Use “High-Performance Computing and Big Data” (CKP “Informatics”) at the Federal Research Center “Computer Science and Control,” Russian Academy of Sciences (Moscow). The authors thank Professor A.G. Italiantsev, Dr. Sci. (Phys.-Math.), for setting the problem and his advice on the research topic.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Abgaryan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, A.A., Abgaryan, K.K. & Reviznikov, D.L. Quantum Mechanical Simulation of Polarization Switching in HfO2 Crystals. Russ Microelectron 52, 805–809 (2023). https://doi.org/10.1134/S1063739723080127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723080127

Keywords:

Navigation