Log in

DFT Electronic Structure Simulation and Adsorption of Germanium in Ordered Graphene with a Vacancy

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The results of studies by the density functional theory (DFT) method of the density of the electronic states (DOS) of supercells of the interface of defective graphene/Ge are presented. The regularities of the change in DOS in the series graphene/Ge → graphene + vacancy/Ge (GPV) are studied. The features of the distribution of the density of electronic states at the ordered vacancy–graphene/Ge interface are discussed. The nature of the bond between graphene and germanium and the adsorption properties of the GPV–Ge system are studied based on the DFT calculations and physicochemical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Asadov, M.M., Mustafaeva, S.N., Guseinova, S.S., and Lukichev, V.F., Ab initio calculations of the electronic properties and the transport phenomena in graphene materials, Phys. Solid State, 2020, vol. 62, no. 11, pp. 2224–2231. https://doi.org/10.1134/S1063783420110037

    Article  Google Scholar 

  2. Tsetseris, L., Wang, B., and Pantelides, S.T., Substitutional do** of graphene: The role of carbon divacancies, Phys. Rev. B, 2014, vol. 89, no. 3, p. 035411. https://doi.org/10.1103/PhysRevB.89.035411

    Article  Google Scholar 

  3. Asadov, M.M., Guseinova, S.S., and Lukichev, V.F., Ab initio modeling of the electronic and energy structure and opening the band gap of a 4p-element-doped graphene monolayer, Russ. Microelectron., 2020, vol. 49, no. 5, pp. 314–323. https://doi.org/10.1134/S1063739720050030

    Article  Google Scholar 

  4. Lukichev, V.F. and Amirov, I.I., Research and development in the field of micro and nanosystems, Istor. Nauki Tekh., 2018, no. 8, pp. 92–99.

  5. Asadov, M.M., Mustafaeva, S.N., Guseinova, S.S., Lukichev, V.F., and Tagiev, D.B., Ab initio modeling the influence of the location and properties of ordered vacancies on the magnetic state of a graphene monolayer, Phys. Solid State, 2021, vol. 63, no. 5, рр. 680–689.https://doi.org/10.1134/S1063783421050036

  6. Akturk, E., Ataca, C., and Ciraci, S., Effects of silicon and germanium adsorbed on graphene, Appl. Phys. Lett., 2010, vol. 96, no. 12, p. 123112-3. https://doi.org/10.1063/1.3368704

    Article  Google Scholar 

  7. Loghavia, M.M., Mohammadi-Maneshb, H., Eqraa, R., Ghasemia, A., and Babaieea, M., DFT study of adsorption of lithium on Si, Ge-doped divacancy defected graphene as anode material of Li-ion battery, Phys. Chem. Res., 2018, vol. 6, no. 4, pp. 871–878. https://doi.org/10.22036/pcr.2018.148943.1543

    Article  Google Scholar 

  8. Gao, H., Zhou, J., Lu, M., Fa, W., and Chen, Y., First-principles study of the IVA group atoms adsorption on graphene, J. Appl. Phys., 2010, vol. 107, no. 11, p. 114311. https://doi.org/10.1063/1.3437640

    Article  Google Scholar 

  9. Ould Në, M.L., Abbassi, A., Ez-Zahraouy, A.B., and El Kenz, A., Electronic optical, properties and widening band gap of graphene with Ge do**, Opt. Quant. Electron., 2017, vol. 49, no. 6, p. 218-13. https://doi.org/10.1007/s11082-017-1024-5

  10. Jules, C., Moreac, A., Delhaye, G., Lépine, B., Tricot, S., Turban, P., Schieffer, P., and Le Breton, J.-C., Reduction of Schottky barrier height at graphene/germanium interface with surface passivation, Appl. Sci. MDPI, 2019, vol. 9, no. 23, p. 5014. https://doi.org/10.3390/app9235014

  11. Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev. B, 1964, vol. 136, no. 3, pp. 864–871. https://doi.org/10.1103/PhysRev.136.B864

    Article  MathSciNet  Google Scholar 

  12. Koch, W.A. and Holthausen, M.C., Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001, 2nd ed. ISBN: 978-3-527-30372-4.

    Book  Google Scholar 

  13. Fulde, P., Electron Correlations in Molecules and Solids, Springer Series in Solid-State Sciences, Berlin: Springer, 2002. https://doi.org/10.1007/978-3-642-57809-0

  14. Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, vol. 140, no. 4, pp. 1133–1138. https://doi.org/10.1103/physrev.140.a1133

    Article  MathSciNet  Google Scholar 

  15. Kohn, W., Meir, Y., and Makarov, D.E., Van der Waals energies in density functional theory, Phys. Rev. Lett., 1998, vol. 80, no. 19, pp. 4153–4156. https://doi.org/10.1103/PhysRevLett.80.4153

    Article  Google Scholar 

  16. Parr, R.G. and Yang, W., Density-Functional Theory of Atoms and Molecules, New York: Oxford Univ. Press, 1989. ISBN: 9780195092769.

    Google Scholar 

  17. Jones, R.O. and Gunnarsson, O., The density functional formalism, its applications and prospects, Rev. Mod. Phys., 1989, vol. 61, no. 3, pp. 689–746. https://doi.org/10.1103/RevModPhys.61.689

    Article  Google Scholar 

  18. Ernzerhof, M., Perdew, J.P., and Burke, K., Density functionals: Where do they come from, why do they work?, in Density Functional Theory I, Vol. 180 of Topics in Current Chemistry, Nalewajski, R.F., Ed., Berlin: Springer, 1996. https://doi.org/10.1007/3-540-61091-X_1

  19. Zupan, A., Burke, K., Ernzerhof, M., and Perdew, J.P., Distributions and averages of electron density parameters: explaining the effects of gradient corrections, J. Chem. Phys., 1997, vol. 106, no. 24, pp. 10184–10193. https://doi.org/10.1063/1.474101

    Article  Google Scholar 

  20. Perdew, J.P. and Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 1981, vol. 23, no. 10, pp. 5048–5079. https://doi.org/10.1103/physrevb.23.5048

    Article  Google Scholar 

  21. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  Google Scholar 

  22. Yengejeh, S.I., Kazemi, S.A., and Öchsner, A.A., Primer on the Geometry of Carbon Nanotubes and Their Modifications, Cham: Springer Int., 2015. https://doi.org/10.1007/978-3-319-14986-8_1

  23. Mulliken, R.S., Electronic population analysis on LCAOMO molecular wave functions, J. Chem. Phys., 1955, vol. 23, no. 10, pp. 1833–1840. https://doi.org/10.1063/1.1740588

    Article  Google Scholar 

  24. Hamann, D., Schlüter, M., and Chiang, C., Norm-conserving pseudopotentials, Phys. Rev. Lett., 1979, vol. 43, no. 20, pp. 1494–1497. https://doi.org/10.1103/PhysRevLett.43.1494

    Article  Google Scholar 

  25. Kleinman, L. and Bylander, D.M., Efficacious form for model pseudopotentials, Phys. Rev. Lett., 1982, vol. 48, no. 20, pp. 1425–1428. https://doi.org/10.1103/PhysRevLett.48.1425

    Article  Google Scholar 

  26. Pickett, W.E., Pseudopotential methods in condensed matter applications, Comput. Phys. Rep., 1989, vol. 9, no. 3, pp. 115–197. https://doi.org/10.1016/0167-7977(89)90002-6

    Article  Google Scholar 

  27. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, vol. 41, no. 11, pp. 7892–7895. https://doi.org/10.1103/PhysRevB.41.7892

    Article  Google Scholar 

  28. Ali, M., Pi, X., Liu, Y., and Yang, D., Electronic and magnetic properties of graphene, silicene and germanenewithvarying vacancy concentration, AIP Adv., 2017, vol. 7, no. 4, pp. 045308-1–11. https://doi.org/10.1063/1.4980836

    Article  Google Scholar 

  29. Edwards, D.M. and Katsnelson, M.I., High-temperature ferromagnetism of Sp electrons in narrow impurity bands: application to CaB6, J. Phys.: Condens. Matter, 2006, vol. 18, no. 31, pp. 7209–7225. https://doi.org/10.1088/0953-8984/18/31/016

    Article  Google Scholar 

  30. Schlick, T., Molecular Modeling and Simulation, New York: Springer Science, 2002. ISBN 978-1-4757-5893-1. https://doi.org/10.1007/978-0-387-22464-0

  31. El-Barbary, A.A., Telling, R.H., Ewels, C.P., Heggie, M.I., and Briddon, P.R., Structure and energetics of the vacancy in graphite, Phys. Rev. B, 2003, vol. 68, no. 14, pp. 144107-1–11. https://doi.org/10.1103/PhysRevB.68.144107

    Article  Google Scholar 

  32. Huang, B., Li, Z.Y., Liu, Z.R., Zhou, G., Hao, S.G., Wu, J., Gu, B.-L., and Duan, W., Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor, J. Phys. Chem. C, 2008, vol. 112, pp. 13442–13446. https://doi.org/10.1021/jp8021024

    Article  Google Scholar 

  33. Zhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., and Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study, Nanotecnology, 2009, vol. 20, no. 18, p. 185504. https://doi.org/10.1088/0957-4484/20/18/185504

    Article  Google Scholar 

  34. Jaguar 7.9, User Manual, New York: Schrödinger, 2012.

  35. Israelchvili, J.N., Intermolecular and Surface Forces, Amsterdam: Academic, Elsevier, 2011, 3rd ed.

    Google Scholar 

  36. Gao, H., Zhou, J., Lu, M., Fa, W., and Chen, Y., First-principles study of the IVA group atoms adsorption on graphene, J. Appl. Phys., 2010, vol. 107, no. 11, pp. 114311-1–6. https://doi.org/10.1063/1.3437640

    Article  Google Scholar 

  37. Rafique, M., Yong, S., Ali, I., and Ahmed, I., Germanium atom substitution in monolayer graphene: a first-principles study, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 422, p. 012010. https://doi.org/10.1088/1757-899X/422/1/012010

  38. Chen, D.M., Shenai, P.M., and Zhao, Y., Tight binding description on band gap opening of pyrenedispersed graphene, Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 1515–1520. https://doi.org/10.1039/C0CP00909A

    Article  Google Scholar 

  39. Asadov, M.M., Mustafayeva, S.N., Huseynova, S.S., Lukichev, V.F., Tagiev, D.B. Simulation of the structural and energy characteristics of atoms in a 2D GaS crystal with point defects, Phys. Solid State, 2022, vol. 64, no. 1, pp. 46–59.https://doi.org/10.21883/FTT.2022.01.51830.182

  40. Mustafayeva, S.N., Asadov, M.M., Huseynova, S.S., Dzhabarov A.I., Lukichev V.F. Electronic, dielectric properties and charge transfer in a TlGaS2 : Nd3+ single crystal at direct and alternating current, Phys. Solid State, 2022, vol. 64, no 4, pp. 428–436.

  41. Trushin, Yu.V., Fizicheskie osnovy materialovedeniya (Physical Principles of Material Science), St. Petersburg: Akad. Univ., 2015, 2nd ed. ISBN 978-5-9064-3304-642.

  42. Zakharchenko, K.V., Fasolino, A., Los, J.H., and Katsnelson, M.I., Melting of graphene: from two to one dimension, J. Phys.: Condens. Matter, 2011, vol. 23, no. 20, p. 202202. https://doi.org/10.1088/0953-8984/23/20/202202

    Article  Google Scholar 

  43. Novikov, I.I., Defekty kristallicheskogo stroeniya metallov (Defects of Crystal Structure of Metals), Moscow: Metallurgiya, 1983.

  44. Zhao, L., Najafabadi, R., and Srolovitz, D.J., Finite temperature vacancy formation thermodynamics: local harmonic and quasiharmonic studies, Model. Simul. Mater. Sci. Eng., 1993, vol. 1, no. 4, pp. 539–551. https://doi.org/10.1088/0965-0393/1/4/015

    Article  Google Scholar 

Download references

Funding

This study was in part supported by the Science Development Fund under the President of the Republic of Azerbaijan, project EİF-BGM-4-RFTFl/2017-21/05/lM-07 and the Russian Foundation for Basic Research, project 18-57-06001 no. Az_a 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Asadov or V. F. Lukichev.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadov, M.M., Mustafaeva, S.N., Guseinova, S.S. et al. DFT Electronic Structure Simulation and Adsorption of Germanium in Ordered Graphene with a Vacancy. Russ Microelectron 51, 83–96 (2022). https://doi.org/10.1134/S1063739722010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722010024

Keywords:

Navigation