Log in

Assembly of 3D-wares with the use of wire leadouts

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Some methods of the formation of microwelds, which are most acceptable for the assembly of 3D-wares with the use of wire leadouts, have been analyzed. Some peculiarities of the bonding of inner wirings on a die and a package by different welding methods, such as pressure welding with indirect pulsed heating and thermosonic, ultrasonic, and split-tip welding, have been considered. The effect of structural and technological factors on the quality of microwelds made by ultrasonic welding with the use of aluminum wire, aluminum metallization on a die, and gold, nickel, and nickel alloy coatings has been studied. Some information on microwelds made with the use of copper wire and copper metallization has been represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondar’, D.M., Modern chip manufacturing and assembly technologies in semiconductor microelectronics, Tekhnol. Elektron. Prom-sti, 2011, no. 7, pp. 52–60.

    Google Scholar 

  2. Stroganov, A.V., Tsybin, S.A., and Bystritskii, A.V., 3D-LSI three-dimensional integrated circuits, Komponenty Tekhnol., 2011, no. 1, pp. 38–41.

    Google Scholar 

  3. Mukhina, E. and Bashta, P., 3D assembly: technology of through silicon vias, Elektronika: Nauka. Tekhnol. Biznes, 2009, no. 2, pp. 92–93.

    Google Scholar 

  4. Vasil’ev, A., Modern technologies of 3D integration, Komponenty Tekhnol., 2010, no. 1, pp. 156–158.

    Google Scholar 

  5. Balashov, Yu.S., Zenin, V.V., and Segal, Yu.V., Sborochnye operatsii i ikh kontrol’ v mikroelektronike. Uchebnoe posobie (Assembly Operations and Their Control in Microelectronics: Textbook), Voronezh: Voronezh Gos. Tekhn. Univ., 2004.

    Google Scholar 

  6. US Patent 6075281, 2000.

  7. Khokhlun, A. and Beil’, V., Some peculiarities of the technology of the production of modern multichip microassemblies and MCM-C “system-in-packages,” Tekhnol. Elektron. Prom-sti, 2011, no. 5, pp. 46–49.

    Google Scholar 

  8. Shmakov, M., Khokhlun, A., and Parshin, V., Shkola proizvodstva gibridnoplenochnykh integral’nykh skhem (School of the Production of Hybrid Thin-Film Integrated Circuits), Moscow: ZAO Ostec, 2008.

    Google Scholar 

  9. Lanin, V. and Petukhov, I., Ultrasonic equipment for the welding of microconductors, Komponenty Tekhnol., 2009, no. 8, pp. 124–128.

    Google Scholar 

  10. Zenin, V.V., Novokreshchenova, E.P., and Khishko, O.V., Flip-chip bump-lead fabrication: A review, Russ. Microelectron., 2008, vol. 37, no. 2, pp. 107–113.

    Article  Google Scholar 

  11. Yeau-Ren, J. and Jeng-Haur, H., A microcontact approach for ultrasonic wire bonding in microelectronics, Trans. ASME, J. Tribol., 2001, vol. 123, no. 4, pp. 725–731.

    Article  Google Scholar 

  12. Pogorel’tsev. I., Some methods of improving the quality and reliability of ultrasonic welding, Silov. Elektron., 2010, no. 2, pp. 102–104.

    Google Scholar 

  13. Lanin V., Petukhov, I., and Mordvintsev, D., Improving the quality of microwelds in integrated circuits with the use of high-frequency ultrasonic systems, Tekhnol. Elektron. Prom-sti, 2010, no. 1, pp. 48–50.

    Google Scholar 

  14. Koval’chuk, G., Petukhov, I., Lanin, V., et al., New generation of ultrasonic microwelding systems, Tekhnol. Elektron. Prom-sti, 2011, no. 8, pp. 36–40.

    Google Scholar 

  15. RF Patent 2271909, Byull. Izobret., 2006, no. 8.

  16. Emel’yanov, V.A., Korpusirovanie integral’nykh skhem (Packaging of Integrated Circuits), Minsk: Polifakt, 1998.

    Google Scholar 

  17. US Patent 5465899, 1995.

  18. Gorlov, M.I., Zenin, V.V., and Kolychev, A.I., Studying the effect of the composition of aluminum metallization on the quality of aluminum-aluminum micro-welds, Izv. Vyssh. Uchebn. Zaved. Elektron., 1998, no. 6, pp. 67–72.

    Google Scholar 

  19. Zenin, V.V., Bokarev, D.I., and Segal, Yu.E., Studying the microwelds of an aluminum wire with the gold galvanic coatings of electronic ware packages, Izv. Vyssh. Uchebn. Zaved. Elektron., 1999, no. 5, pp. 67–74.

    Google Scholar 

  20. Gurov, K.P., Gusev, O.V., Dol’nikov, S.S., et al., Some peculiarities of the growth of phases during the annealing of gold-aluminum thermocompression contacts in the current and currentless regimes, Fiz. Khim. Obrab. Mater., 1980, no. 2, pp. 79–89.

    Google Scholar 

  21. Pimenov, V.I., Gurov, K.P., Khudyakov, K.I., et al., On the effect of the current regime on the formation of phases in a diffusion layer, Fiz. Khim. Obrab. Mater., 1978, no. 2, pp. 107–111.

    Google Scholar 

  22. Kolesnikov, D.P., Andrushko, A.F., and Sukhina, E.I. Aluminum-gold interaction in thin layers, Fiz. Met. Metalloved., 1972, no. 3, pp. 529–575.

    Google Scholar 

  23. Okumura, K., Degradation of bonding strength (Al wire Au film) by Kirkendal voids, J. Electrochem. Soc., 1981, vol. 128, no. 3, pp. 571–575.

    Article  MathSciNet  Google Scholar 

  24. Lyashok, A.P., Rossoshinskii, A.A., and Shevchenko, E.S., On the reason of aluminum-gold microweld faults in integrated circuits, Elektron. Tekh. Ser. 6. Microelektronika, 1968, no. 3, pp. 74–79.

    Google Scholar 

  25. Thin Films. Interdiffusion and Reactions, Poate, J.M., Tu, K.N., and Maier, J.W., Eds., New York: Wiley, 1978.

    Google Scholar 

  26. Aleksenko, A.G., Zenin, V.V., and Kolychev, A.I., Stoikost’ mikrosoedinenii izdelii elektronnoi tekhniki k temperaturnym vozdeistviyam. Obzor (Resistance of the Microwelds of Electronic Wares to Thermal Effects: Review), Moscow: Izd. Tsentra Nauchn.-Tekhn. Inform. Poisk, 1988, Ser. VII, no. 77.

    Google Scholar 

  27. Kolychev, A.I. and Sedaev, V.P., Improving the reliability of microwelds in semiconductor assemblies, in Progressivnaya tekhnologiya v svarochnom proizvodstve (Advanced Technology in Welding Industry), Voronezh: Voronezh Politekhn. Univ., 1985, pp. 46–51.

    Google Scholar 

  28. Zenin, V.V., Segal, Yu.E., and Kolychev, A.I., Studying the quality of aluminum wire microwelds in electronic ware packings coated by nickel and its alloys, Izv. Vyssh. Uchebn. Zaved. Elektron., 2000, no. 2, pp. 37–44.

    Google Scholar 

  29. Erusalimchik, I.G., Ruzanov, V.V., Shchukina, N.V., et al., Change of the properties of a nickel-boron coating under thermal treatment in hydrogen, Elektron. Tekh. Ser. Poluprovodn. Prib., 1981, no. 5, pp. 48–50.

    Google Scholar 

  30. Vodyanov, Yu.M., Zenin, V.V., and Osenkov, V.N., Studying the corrosion resistance of aluminum conductor-gold film microwelded contacts, Proizv.-Tekhn. Opyt, 1982, no. 5, pp. 12–15.

    Google Scholar 

  31. Matsushita, Y., Studies of breaks in ultra-fine wire, Wire Ind., 1988, vol. 55, no. 656, pp. 588–591.

    Google Scholar 

  32. US Patent 4676827, 1987.

  33. US Patent 4726859, 1988.

  34. Lanin, V. and Petukhov, I., Formation of microwelds in integrated microcircuits via contact microwelding, Tekhnol. Elektron. Prom-sti, 2010, no. 7, pp. 54–58.

    Google Scholar 

  35. Olsen, D.R. and James, K.L., Effect of ambient atmosphere on aluminum-copper wirebond reliability, IEEE Trans. Compon., Hybrids, Manuf. Technol., 1984, vol. 7, no. 4, pp. 357–362.

    Article  Google Scholar 

  36. Pitt, V.A., Needes, G.R.S., and Johnson, R.W., Ultrasonic aluminum wire bonding to copper conductors, in 31st Electron. Compon. Conf., Atlanta, Ga, May 11–13, 1981, New York, 1981, no. 4, pp. 18–23.

    Google Scholar 

  37. Pitt, V.A. and Needes, G.R.S. Thermosonic gold wire bonding to copper conductors, IEEE Trans. Compon., Hybrids, Manuf. Technol., 1982, vol. 5, no. 4, pp. 435–440.

    Article  Google Scholar 

  38. Pitt, V.A. and Needes, G.R.S., Thermosonic gold wire bonding to copper conductors, Solid State Technol., 1983, vol. 26, no. 3, pp. 81–86.

    Google Scholar 

  39. Emel’yanov, V.A., Lanin, V.L., and Lastochkina, V.F., Thermosonic splicing of interconnections with the use of a gold wire on copper frames, Tekhnol. Elektron. Prom-sti, 1998, no. 2, pp. 28–30.

    Google Scholar 

  40. He, M., Novak, S., Vanamurth, L., Bakhru, H., Plawsky, J., and Lu, T.-M., Cu penetration into low-k dielectric during deposition and bias-temperature stress, Appl. Phys. Lett., 2010, vol. 97, no. 25, p. 252901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zenin.

Additional information

Original Russian Text © V.V. Zenin, A.A. Stoyanov, S.V. Petrov, S.Yu. Chistyakov, 2014, published in Mikroelektronika, 2014, Vol. 43, No. 1, pp. 29–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenin, V.V., Stoyanov, A.A., Petrov, S.V. et al. Assembly of 3D-wares with the use of wire leadouts. Russ Microelectron 43, 21–33 (2014). https://doi.org/10.1134/S1063739714010090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739714010090

Keywords

Navigation