Log in

The Application of Shortwave Band GPR in Investigation of Surrounding Rock-and-Lining Interface

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The Ground Penetrating Radar method is used to study a three-layered model of the surrounding rock–void–lining interface with regard to variation in the void thickness and in the electromagnetic properties of the void filler. The numerical modeling uses the method of finite differences in the time domain. The numerical modeling data are compared with the results of the physical simulation implemented using SIR-3000 GPR with the Model 52600 antenna having the working frequency of 2.6 GHz (S-band). It is found that the size of the void behind concrete lining and the electromagnetic properties of a material filling the void have influence on the accuracy of ranging to the lower boundary of the void and to the discontinuity in the form of a steel bolt located immediately behind the void in surrounding rock mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. Qin, H., Zhang, D., Tang, Y., and Wang, Y., Automatic Recognition of Tunnel Lining Elements from GPR Images Using Deep Convolutional Networks with Data Augmentation, Autom. Constr., 2021, vol. 130, 103830.

    Google Scholar 

  2. Qin, H., Tang, Y., Wang, Z., **e, X., and Zhang, D., Shield Tunnel Grouting Layer Estimation Using Sliding Window Probabilistic Inversion of GPR Data, Tunn. Undergr. Sp. Technol., 2021, vol. 112, 103913.

    Google Scholar 

  3. McCann, D.M. and Forde, M.C., Review of NDT Methods in the Assessment of Concrete and Masonry Structures, NDT E Int., 2001, vol. 34, pp. 71–84.

    Google Scholar 

  4. Shaw, M.R., Millard, S.G., Molyneaux, T.C.K., Taylor, M.J., and Bungey, J.H., Location of Steel Reinforcement in Concrete Using Ground Penetrating Radar and Neural Networks, NDT E Int., 2004, vol. 38, pp. 203–212.

    Google Scholar 

  5. Gokhan, K. and Levent, E., Neural Network Based Inspection of Voids and Karst Conduits in Hydro-Electric Power Station Tunnels Using GPR, J. Appl. Geophys., 2018, vol. 151, pp. 194–204.

    Google Scholar 

  6. Feng, D., Wang, X., and Zhang, B., Specific Evaluation of Tunnel Lining Multi-Defects by All-Refined GPR Simulation Method Using Hybrid Algorithm of FETD and FDTD, Constr. Build. Mater., 2018, vol. 185, pp. 220–229.

    Google Scholar 

  7. Wu **anlong, Bao **aohua, Shen Jun, Chen **angsheng, Cui, and Hongzhi, Evaluation of Void Defects Behind Tunnel Lining through GPR Forward Simulation, Sensors, 2022, vol. 22, 9702.

    Google Scholar 

  8. Hasan Istiaque and Yazdani Nur, An Experimental and Numerical Study on Embedded Rebar Diameter in Concrete Using Ground Penetrating Radar, Chinese J. Eng., 2016, pp. 1–7.

    Google Scholar 

  9. Li Chuan, Li Minmin, Yang **, Fan Mingkun, Yang **, and Wang Lulu, Boundary Recognition of Tunnel Lining Void from Ground Penetrating Radar Data, J. Geophys. Eng., 2023, vol. 20.

  10. Luo, T.X.H and Lai, W.W.L., GPR Pattern Recognition of Shallow Subsurface Air Voids, Tunn. Undergr. Sp. Technol., 2020, vol. 99, 103355.

    Google Scholar 

  11. Lee, S.J., Lee, J.W., Choi, Y.T., Lee, J.S., and Sagong, M., Analysis of GPR Signal Patterns by Tunnel Lining Thickness and Void Condition, J. Korean Soc. Railway, 2020, vol. 24, pp. 781–729.

    Google Scholar 

  12. Harseno, R.W., Lee, S.J., Kee, S.H., and Kim, S., Evaluation of Air-Voids Behind Concrete Tunnel Linings Using GPR Measurements, Remote Sens., 2022, vol. 14, 5438.

    Google Scholar 

  13. Parkinson Graham, Berger Klohn, and Ekes Csaba, Ground Penetrating Radar Evaluation of Concrete Tunnel Linings, 12th Int. Conf. on Ground Penetrating Radar, Birmingham, UK, 2008.

  14. Takayama Jun-ya, Ohara Yuki, and Sun Wei, Nondestructive Evaluation of Air Voids in Concrete Structures Using Microwave Radar Technique, SICE J. Control, Meas., Syst. Integr., 2022, vol. 15, pp. 36–47.

    ADS  Google Scholar 

  15. Qin Hui, **e **ongyao, Tang Yu, and Wang Zhengzheng, Experimental Study on GPR Detection of Voids Inside and Behind Tunnel Linings, J. Env. &Eng. Geophys., 2020, vol. 25, pp. 65–74.

    Google Scholar 

  16. Sariçiçek Işil and Seren Aysel, Investigation Concrete Quality of Zigana and Torul Tunnels by Using GPR Method, 2015.

  17. Liu, H., Deng, Z., Han, F., **a, Y., Liu, Q.H., and Sato, M., Time–Frequency Analysis of Air-Coupled GPR Data for Identification of Delamination Between Pavement Layers, Constr. Build. Mater., 2017, vol. 154, pp. 1207–1215.

    Google Scholar 

  18. Dinh, K. and Gucunski, N., Factors Affecting the Detectability of Concrete Delamination in GPR Images, Constr. Build. Mater., 2021, vol. 274, 121837.

    Google Scholar 

  19. Takayama, J.-Y., Ohara, Y., and Sun, W., Nondestructive Evaluation of Air Voids in Concrete Structures Using Microwave Radar Technique, SCIE J. Control Meas. Syst. Integr., 2022, vol. 15, pp. 36–47.

  20. Zubkovich, S.G., Statisticheskie kharakteristiki radiosignalov, otrazhennykh ot zemnoi poverkhnosti (Statistical Characteristics of Radio Signals Reflected from Ground Surface), Moscow: Sov. Radio, 1968.

    Google Scholar 

  21. Ruban, A.D., Baukov, Yu.N., and Shkuratnik, V.L., Gornaya geofizika. Elektrometricheskie metody geokontrolya. Ch. 3. Vysokochastotnye elektromagnitnye metody: ucheb. posob. (Mining Geophysics. Electrometric Methods of Geocontrol. Part III: High-Frequency Electromagnetic Methods: Educational Aid), Moscow: MGGU, 2002.

    Google Scholar 

  22. Effects of Building Materials and Structures on Radiowave Propagation above about 100 MHz, Recommendation ITU-R 2015. P. 2040-1. Available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2040-1-201507-S !!PDF-E.pdf (accessed: 24.08.2023).

  23. Yee, K., Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media, IEEE. Trans. Antennas. Propag., 1966, vol. 14, pp. 302–307.

    ADS  Google Scholar 

  24. Finite-Difference Time-Domain. Available at: https://www.gprmax.com (accessed: 24.08.2023).

  25. Akhaury U., Giannakis I., and Warren C., Giannopoulos A. Machine Learning Based Forward Solver: An Automatic Framework in gprMax, 11th Int. Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2021.

  26. Warren Craig, Giannopoulos Antonios, and Giannakis Iraklis. GprMax: Open Source Software to Simulate Electromagnetic Wave Propagation for Ground Penetrating Radar, Comput. Phys. Commun., 2016, vol. 209, no. 3.

    ADS  CAS  Google Scholar 

  27. Vladov, M.L. and Sudakova, M.S., Georadiolokatsiya. Ot fizicheskikh osnov do perspektivnykh napravlenii (Ground Penetrating Radar. From Physical Basics to Promising Trends), Moscow: Geos, 2017.

    Google Scholar 

  28. **ao M., Chen C., and Su Z. The Calculation Method of Equivalent Dielectric Constant of Multi-Layer Underground Media, Geophys. Geochem. Explor., 2013, vol. 37, pp. 368–372.

    Google Scholar 

  29. Yelf R. Where is True Time Zero? Proc. 10th Int. Conf. on Grounds Penetrating Radar, Delft, The Netherlands, 2004, pp. 279–282.

  30. Zadhoush Hossain, Giannopoulos Antonios, and Giannakis Iraklis, Optimizing the Complex Refractive Index Model for Estimating the Permittivity of Heterogeneous Concrete Models, Remote Sensing, 2021, vol. 13.

    ADS  Google Scholar 

  31. SIR-3000 GPR System. Available at: http://www.geophysical.com/sir3000.htm (accessed: 24.08.2023).

  32. Baryshnikov, V., Khmelinin, A., and Denisova, E., GPR Detection of Inhomogeneities in Concrete Lining of Underground Tunnels, Journal of Mining Sciences, 2014, vol. 50, pp. 25–32.

    Google Scholar 

  33. Shkuratnik, V.L., Izmereniya v fizicheskom eksperimente (Measurements in Physical Experiment), Moscow: AGN, 2000.

    Google Scholar 

  34. Sukhobok, Yu.A., Pupatenko, V.V., and Stoyanovich, G.M., Osnovy rasshifrovki i interpretatsii radaorgamm: ucheb. posob. (Elements of Decoding and Interpretation of Radarograms: Educational Aid), Khabarovsk: DVGUPS, 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Denisova or K. O. Sokolov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 6, pp. 13-30. https://doi.org/10.15372/FTPRPI20230602.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oparin, V.N., Denisova, E.V., Khmelinin, A.P. et al. The Application of Shortwave Band GPR in Investigation of Surrounding Rock-and-Lining Interface. J Min Sci 59, 885–900 (2023). https://doi.org/10.1134/S1062739123060029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123060029

Keywords

Navigation