Log in

Deep Well Production Capacity in Mutnovskoe Geothermal Field, Kamchatka

  • MINING THERMOPHYSICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

Exploitation of Mutnovskoe Geothermal Field, which is a key asset of geothermal power engineering in Russia, is faced with the problem connected with reduction in pressure in the producing reservoir, which results in decommissioning of production wells. Production capacity of planned wells 3 and 4 km deep for treating deeper horizons in Mutnovskoe Field is predicted. The prediction results are compared with the data of a standard production well 2 km deep in this field and prove the promising nature of the deeper horizons of this reservoir. In particular, essentially greater steam flow rate out is expected in the deeper production well as compared with the standard well. Furthermore, it is expected to produce much more geothermal energy owing to the increased allowable reduction in the reservoir pressure and thanks to additional heat elimination from larger volume of enclosing rock mass of the produced fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Bertani, R., Geothermal Power Generation in the World 2010–2014 Update Report, Geothermics, 2016, vol. 60, pp. 31–43.

    Article  Google Scholar 

  2. Lund, J.W. and Boyd, T.L., Direct Utilization of Geothermal Energy 2015 Worldwide Review, Geothermics, 2016, vol. 60, pp. 66–93.

    Article  Google Scholar 

  3. Kayaci N. and Demir H. Comparative Performance Analysis of Building Foundation Ground Heat Exchanger Geothermics 2020 vol. 83 101710.

    Article  Google Scholar 

  4. Kumar, S. and Murugesan, K., Optimization of Geothermal Interaction of a Double U-Tube Borehole Heat Exchanger for Space Heating and Cooling Applications Using Taguchi Method and Utility Concept, Geothermics 2020 vol. 83 101723.

    Article  Google Scholar 

  5. Luo, Y., Yan T., and Yu J. Integrated Analytical Modeling of Transient Heat Transfer Inside and Outside U-Tube Ground Heat Exchanger: A New Angle from Composite-Medium Method, Int. J. Heat Mass Transfer, 2020, vol. 162, 120373.

    Article  Google Scholar 

  6. Moore, K.R. and Hollander, H.M., Evaluation of NaCl and MgCl2 Heat Exchange Fluids in a Deep Binary Geothermal System in a Sedimentary Halite Formation, Geothermal Energy, 2021, vol. 9, no. 8.

    Article  Google Scholar 

  7. Hu L., Ghassemi A., Pritchett J., and Garg S. Characterization of Laboratory-Scale Hydraulic Fracturing for EGS Geothermics 2020 vol. 83 101706.

    Article  Google Scholar 

  8. Templeton, D.C., Wang, J., Goebel, M.K., Harris, D.B., and Cladouhos, T.T., Induced Seismicity during the 2012 Newberry EGS Stimulation: Assessment of Two Advanced Earthquake Detection Techniques at an EGS Site, Geothermics 2020 vol. 83 101720.

    Article  Google Scholar 

  9. Renaud, T., Verdin, P., and Falcon, G., Numerical Simulation of a Deep Borehole Heat Exchanger in the Krafla Geothermal System, Int. J. Heat Mass Transfer, 2019, vol. 143, 118496.

    Article  Google Scholar 

  10. Zhang, J., **e, J., and Liu, X., Numerical Evaluation of Heat Extraction for EGS with Tree-Shaped Wells, Int. J. Heat Mass Transfer, 2019, vol. 134, pp. 296–310.

    Article  Google Scholar 

  11. Shulyupin A.N. and Varlamova N.N., Modern Tendencies in Development of Geothermal Resources, Georesursy, 2020, vol. 22, no. 4, pp. 113–122.

    Article  Google Scholar 

  12. Vasyanovich, Yu.A., Shulyupin, A.N., and Varlamova, N.N., Limiting Reservoir Pressure for Steam-Lift Fluid Recovery at Mutnovskoe Geothermal Deposit, Mining Informational and Analytical Bulletin—GIAB, 2019, no. 8, special issue 30, pp. 25–32.

  13. James, R., Factors Controlling Borehole Performance, Geothermics, 1970, vol. 2, pp. 1502–1515.

    Article  Google Scholar 

  14. Shulyupin, A.N. and Chermoshentseva, A.A., Mathematical Model Family WELL-4 to Calculate Flows in Water–Steam Geothermal Wells, Matem. Modelirovanie, 2016, vol. 28, no. 7, pp. 56–64.

    Google Scholar 

  15. Droznin, V.A., Fizicheskaya model’ vulkanicheskogo protsessa (Physical Model of Volcanic Process), Moscow: Nauka, 1980.

    Google Scholar 

  16. Shulyupin, A.N., Ustoichivost’ rezhima raboty parovodyanoi skvazhiny (Water–Steam Well Duty Stability, Khabarovsk: Amur-print, 2018.

    Google Scholar 

  17. Mubarok, M.H. and Zarrouk, S.J., Discharge Stimulation of Geothermal Wells: Overview and Analysis, Geothermics, 2017, vol. 70, pp. 17–37.

    Article  Google Scholar 

  18. Kiryukhin, A.V. and Sugrobov, V.M., Geothermal Resources of Kamchatka and Their Development Prospects, Vulkanolog. Seismolog., 2019, no. 6, pp. 50–65.

  19. Beckers, K.F. and McCabe, K., GEOPHIRES v2.0: Updated Geothermal Techno-Economic Simulation Tool, Geothermal Energy, 2019, vol. 7, no. 5.

    Article  Google Scholar 

  20. Dyad’kin, Yu.D., Razrabotka geotermal’nykh mestorozhdenii (Development of Geothermal Deposits), Moscow: Nedra, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Shulyupin or A. A. Lyubin.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 1, pp. 93-101. https://doi.org/10.15372/FTPRPI20220110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulyupin, A.N., Lyubin, A.A. & Chernev, I.I. Deep Well Production Capacity in Mutnovskoe Geothermal Field, Kamchatka. J Min Sci 58, 82–89 (2022). https://doi.org/10.1134/S1062739122010100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122010100

Keywords

Navigation