Log in

Reprogramming of Primed Human Pluripotent Stem Cells into a Naïve State

  • ORIGINAL RESEARCH
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells (PSCs) can be maintained in a naïve or primed state of pluripotency in vitro. Being in one state or another, PSCs have different potentials of differentiation into extra-embryonic and embryonic cells. In terms of the expression profile and epigenetic pattern of the genome, naïve PSCs are comparable to the cells of the inner cell mass of the blastocyst, while primed PSCs are similar in their characteristics to the cells of the postimplantation epiblast. Reprogramming of primed PSCs into the naïve state and maintenance of naïve PSCs in culture is a crucial issue in studying the epigenetic processes of preimplantation development of the human embryo and methods for efficient differentiation of PSCs into derivatives of embryonic and extra-embryonic cells. The aim of this work is to reprogram primed induced pluripotent stem cells (iPSCs) into a naïve pluripotent state to obtain a homogeneous population of iPSCs according to the state of pluripotency in culture. The task of this work is to develop a protocol and conditions for reprogramming primed iPSCs into a naïve state of pluripotency. In this work, naïve iPSCs were obtained under conditions of application of growth factors FGF2 and TGFβ1 and inhibition of GSK3β and the MEK/ERK signaling pathway (2iF medium). Pretreatment of primed iPSCs with histone deacetylase inhibitors (HDACi) changes the cell morphology and gene expression profile of PSCs towards an earlier state of pluripotency. Using pretreatment of HDACi primed iPSCs followed by maintenance in 2iF medium, the authors obtained naïve iPSCs comparable in colony morphology and expression profile of naïve state marker genes to control naïve iPSCs obtained in RSeT medium. In order to confirm the naïve state of pluripotency of iPSCs obtained 2iF conditions, it is necessary to carry out single cell RNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Ávila-González, D., Portillo, W., García-López, G., et al., Unraveling the spatiotemporal human pluripotency in embryonic development, Front. Cell Dev. Biol., 2021, vol. 9. https://doi.org/10.3389/FCELL.2021.676998/BIBTEX

  2. Blakeley, P., Fogarty, N.M.E., Del Valle, I., et al., Defining the three cell lineages of the human blastocyst by single-cell RNA-seq, Development, 2015, vol. 142, no. 18, pp. 3151–3165. https://doi.org/10.1242/dev.123547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, T., Ueda, Y., **e, S., and Li, E., A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with activede covo methylation, J. Biol. Chem., 2002, vol. 277, no. 41, pp. 38746–38754. https://doi.org/10.1074/JBC.M205312200

    Article  CAS  PubMed  Google Scholar 

  4. Chen, H., Aksoy, I., Gonnot, F., et al., Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naïve-like pluripotency, Nat. Commun., 2015, vol. 6, no. 1. https://doi.org/10.1038/ncomms8095

  5. Collier, A.J., Panula, S.P., Schell, J.P., et al., Comprehensive cell surface protein profiling identifies specific markers of human naïve and primed pluripotent states, Cell Stem Cell, 2017, vol. 20, no. 6, pp. 874–890.e7. https://doi.org/10.1016/J.STEM.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dahéron, L., Opitz, S.L., Zaehres, H., et al., LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells, Stem Cells, 2004, vol. 22, no. 5, pp. 770–778. https://doi.org/10.1634/stemcells.22-5-770

    Article  PubMed  Google Scholar 

  7. Evans, M.J. and Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos, Nature, 1981, vol. 292, no. 5819, pp. 154–156. https://doi.org/10.1038/292154a0

    Article  CAS  PubMed  Google Scholar 

  8. Gafni, O., Weinberger, L., Mansour, A.A., et al., Derivation of novel human ground state naïve pluripotent stem cells, Nature, 2013, vol. 504, no. 7479, pp. 282–286. https://doi.org/10.1038/nature12745

    Article  CAS  PubMed  Google Scholar 

  9. Gharibi B., Gonçalves E., Nashun B., et al., A FGF2-mediated incoherent feedforward loop induces Erk inhibition and promotes naïve pluripotency, BioRxiv, 2020. https://doi.org/10.1101/2020.11.11.378869

  10. Gordeev, M.N., Bakhmet, E.I., and Tomilin, A.N., Pluripotency dynamics during embryogenesis and in cell culture, Russ. J. Dev. Biol., 2021, vol. 52 № 6, pp. 379–389. https://doi.org/10.1134/S1062360421060059

    Article  CAS  Google Scholar 

  11. Göttlicher, M., Minucci, S., Zhu, P., et al., Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells, EMBO J., 2001, vol. 20, no. 24, pp. 6969–6978. https://doi.org/10.1093/emboj/20.24.6969

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guo, G., von Meyenn, F., Rostovskaya, M., et al., Epigenetic resetting of human pluripotency, Development, 2018, vol. 145, no. 8. https://doi.org/10.1242/dev.166397

  13. Guo, G., Stirparo, G.G., Strawbridge, S.E., et al., Human naïve epiblast cells possess unrestricted lineage potential, Cell Stem Cell, 2021, vol. 28, no. 6, pp. 1040–1056.e6. https://doi.org/10.1016/J.STEM.2021.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanna, J., Cheng, A.W., Saha, K., et al., Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, no. 20, pp. 9222–9227. https://doi.org/10.1073/pnas.1004584107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huangfu, D., Maehr, R., Guo, W., et al., Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds, Nat. Biotechnol., 2008, vol. 26, no. 7, pp. 795–797. https://doi.org/10.1038/nbt1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ito, K. and Adcock, I.M., Histone acetylation and histone deacetylation, Mol. Biotechnol., 2002, vol. 20, no. 1, pp. 99–106. https://doi.org/10.1385/MB:20:1:099

    Article  CAS  PubMed  Google Scholar 

  17. Jeronimo, C. and Robert, F., The mediator complex: at the nexus of RNA polymerase II transcription, Trends Cell Biol., 2017, vol. 27, no. 10, pp. 765–783. https://doi.org/10.1016/j.tcb.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  18. Johnstone, R.W., Histone-deacetylase inhibitors: novel drugs for the treatment of cancer, Nat. Rev. Drug Discovery, 2002, vol. 1, no. 4, pp. 287–299. https://doi.org/10.1038/nrd772

    Article  CAS  PubMed  Google Scholar 

  19. Kilens, S., Meistermann, D.I., Moreno, D.I., et al., Parallel derivation of isogenic human primed and naïve induced pluripotent stem cells, Nat. Commun., 2018, vol. 9, no. 1, pp. 1–13. https://doi.org/10.1038/s41467-017-02107-w

    Article  CAS  Google Scholar 

  20. Lagarkova, M.A., Eremeev, A.V., and Svetlakov, A.V., Human embryonic stem cell lines isolation, cultivation, and characterization, In Vitro Cell. Dev. Biol., 2010, vol. 46, nos. 3–4, pp. 284–293. https://doi.org/10.1007/s11626-010-9282-6

    Article  Google Scholar 

  21. Lau, K.X., Mason, E.A., Kie, J., et al., Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal, Nat. Commun., 2020, vol. 11, no. 1, pp. 1–18. https://doi.org/10.1038/s41467-020-16214-8

    Article  CAS  Google Scholar 

  22. Leitch, H.G., McEwen, K.R., Turp, A., et al., naïve pluripotency is associated with global DNA hypomethylation, Nat. Struct. Mol. Biol., 2013, vol. 20, no. 3, pp. 311–316. https://doi.org/10.1038/nsmb.2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levenstein, M.E., Ludwig, T.E., Xu, R.-H., et al., Basic fibroblast growth factor support of human embryonic stem cell self-renewal, Stem Cells, 2006, vol. 24, no. 3, pp. 568–574. https://doi.org/10.1634/STEMCELLS.2005-0247

    Article  CAS  PubMed  Google Scholar 

  24. Liu, X., Nefzger, C.M., Rossello, F.J., et al., Comprehensive characterization of distinct states of human naïve pluripotency generated by reprogramming, Nat. Methods, 2017, vol. 4, no. 11, pp. 1055–1062. https://doi.org/10.1038/nmeth.4436

    Article  CAS  Google Scholar 

  25. Liu, T., Li, J., Yu, L., et al., Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans, Cell Discovery, 2021, vol. 7, no. 1, pp. 1–17. https://doi.org/10.1038/s41421-020-00238-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lynch, C.J., Bernad, R., Martínez-Val, A., et al., Global hyperactivation of enhancers stabilizes human and mouse naïve pluripotency through inhibition of CDK8/19 Mediator kinases, Nat. Cell Biol., 2020, vol. 22, no. 10, pp. 1223–1238. https://doi.org/10.1038/s41556-020-0573-1

    Article  CAS  PubMed  Google Scholar 

  27. Mazid, M.A., Ward, C., Luo, Z., et al., Rolling back human pluripotent stem cells to an eight-cell embryo-like stage, Nature, 2022, vol. 605, no. 7909, pp. 315–324. https://doi.org/10.1038/s41586-022-04625-0

    Article  CAS  PubMed  Google Scholar 

  28. Molè, M.A., Coorens, T.H.H., Shahbazi, M.N., et al., A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre, Nat. Commun., 2021, vol. 12, no. 1, pp. 1–12. https://doi.org/10.1038/s41467-021-23758-w

    Article  CAS  Google Scholar 

  29. Nichols, J. and Smith, A., Naïve and primed pluripotent states, Cell Stem Cell, vol. 4, no. 6, pp. 487–492. https://doi.org/10.1016/j.stem.2009.05.015

  30. Novo, C.L.A., Tale of two states: pluripotency regulation of telomeres, Front. Cell Dev. Biol., 2021, vol. 9. https://doi.org/10.3389/FCELL.2021.703466

  31. Okashita, N., Kumaki, Y., Ebi, K., et al., PRDM14 promotes active DNA demethylation through the Teneleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells, Development, 2014, vol. 141, no. 2, pp. 269–280. https://doi.org/10.1242/dev.099622

    Article  CAS  PubMed  Google Scholar 

  32. Posfai, E., Schell, J.P., Janiszewski, A., et al., Evaluating totipotency using criteria of increasing stringency, Nat. Cell Biol., 2021, vol. 23, no. 1, pp. 49–60. https://doi.org/10.1038/s41556-020-00609-2

    Article  CAS  PubMed  Google Scholar 

  33. Rossant, J. and Tam, P.P.L., New insights into early human development: lessons for stem cell derivation and differentiation, Cell Stem Cell, 2017, vol. 20, no. 1, pp. 18–28. https://doi.org/10.1016/j.stem.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  34. Saraiva, N.Z., Oliveira, C.S., and Garcia, J.M., Histone acetylation and its role in embryonic stem cell differentiation, World J. Stem Cell., 2010, vol. 2, no. 6, p. 121. https://doi.org/10.4252/WJSC.V2.I6.121

    Article  Google Scholar 

  35. Seki, Y., PRDM14 is a unique epigenetic regulator stabilizing transcriptional networks for pluripotency, Front. Cell Dev. Biol., 2018, vol. 6, no. 12. https://doi.org/10.3389/fcell.2018.00012

  36. Seto, E. and Yoshida, M., Erasers of histone acetylation: the histone deacetylase enzymes, Cold Spring Harb. Perspect. Biol., 2014, vol. 6, no. 4, p. a018713. https://doi.org/10.1101/CSHPERSPECT.A018713

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shahbazi, M.N., Mechanisms of human embryo development: from cell fate to tissue shape and back, Development, 2020, vol. 147, no. 14. https://doi.org/10.1242/dev.190629

  38. Sim, Y.-J., Kim, M.-S., Nayfeh, A., Yun, Y.-J., et al., 2i Maintains a naïve ground state in ESCs through two distinct epigenetic mechanisms, Stem Cell Rep., 2017, vol. 8, no. 5, pp. 1312–1328. https://doi.org/10.1016/j.stemcr.2017.04.001

    Article  CAS  Google Scholar 

  39. Smith, A.G., Embryo-derived stem cells: of mice and men, Annu. Rev. Cell Dev. Biol., 2003, vol. 17, no. 1, pp. 435–462. https://doi.org/10.1146/ANNUREV.CELLBIO.17.1.435

    Article  Google Scholar 

  40. Strahl, B.D. and Allis, C.D., The language of covalent histone modifications, Nature, 2000, vol. 403, no. 6765, pp. 41–45. https://doi.org/10.1038/47412

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol. 126, no. 4, pp. 663–676. https://doi.org/10.1016/j.cell.2006.07.024

  42. Vallier, L., Mendjan, S., Brown, S., et al., Activin/Nodal signalling maintains pluripotency by controlling Nanog expression, Development, 2009, vol. 136, no. 8, pp. 1339–1349. https://doi.org/10.1242/dev.033951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ware, C.B., Nelson, A.M., Mecham, B., et al., Derivation of naïve human embryonic stem cells, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 12, pp. 4484–4489. https://doi.org/10.1073/pnas.1319738111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ware, C.B., Wang, L., Mecham, B.H., et al., Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells, Cell Stem Cell, 2009, vol. 4, no. 4, pp. 359–369. https://doi.org/10.1016/j.stem.2009.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weatherbee, B.A.T., Cui, T., and Zernicka-Goetz, M., Modeling human embryo development with embryonic and extra-embryonic stem cells, Dev. Biol., 2021, vol. 474, pp. 91–99. https://doi.org/10.1016/j.ydbio.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  46. Wolffe, A.P., Sinful repression, Nature, 1997, vol. 387, no. 6628, pp. 16–17. https://doi.org/10.1038/387016a0

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto, M., Suwa, Y., Sugiyama, K., et al., PRDM14-CtBP1/2-PRC2 complex regulates transcriptional repression during transition from primed to naïve pluripotency, J. Cell Sci., 2020. https://doi.org/10.1242/jcs.240176

  48. Yamauchi, K., Ikeda, T., Hosokawa, M., et al., Overexpression of nuclear receptor 5A1 induces and maintains an intermediate state of conversion between primed and naïve pluripotency, Stem Cell Rep., 2020, vol. 14, no. 3, pp. 506–519. https://doi.org/10.1016/j.stemcr.2020.01.012

    Article  CAS  Google Scholar 

  49. Ying, Q.-L., Wray, J., Nichols, J., et al., The ground state of embryonic stem cell self-renewal, Nature, 2008, vol. 453, no. 7194, pp. 519–523. https://doi.org/10.1038/nature06968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was performed with the financial support of the Russian Foundation for Basic Research (grant no. 21-74-30015).

Author information

Authors and Affiliations

Authors

Contributions

V.K. Abdyev planned the experimental work, performed experiments, analyzed the results, and wrote the text of the article; A.L. Rippa wrote and edited the text of the article; N.A. Arakelyan performed part of the experiments; E.A. Vorotelyak edited the text and participated in the development of the research concept; A.V. Vasiliev edited the text of the article and participated in the development of the research concept.

Corresponding author

Correspondence to V. K. Abdyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

All applicable international, national and/or institutional principles for the use of animals in experiments and the conditions for their care were observed. We did not include humans as subjects in this study. Approval for the experiments was granted by the Bioethics Committee of the IDB RAS: Resolution no. 45 of February 5, 2021.

Additional information

Translated by E. Tolkunova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdyev, V.K., Rippa, A.L., Arakelyan, N.A. et al. Reprogramming of Primed Human Pluripotent Stem Cells into a Naïve State. Russ J Dev Biol 54, 217–232 (2023). https://doi.org/10.1134/S1062360423040021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360423040021

Keywords:

Navigation