Log in

New Energy Approaches to the Use of Waste Biosorbents of the Microalgae Chlorella kessleri (Chlorellaceae, Chlorellales)

  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The use of microalgae Chlorella kessleri VKPM A1-11 ARM (RF, NPO Algobiotechnology) for environmental and energy purposes is considered. The results of our study of the use of a biomass of C. kessleri microalgae as a biosorbent to purify model wastewater from Cu2+ ions under static conditions are presented. Biosorption is a promising technology for the treatment of industrial effluents containing various heavy metal compounds, but the issues of economic benefits of using biosorbents, their environmental safety, and the cost of disposal of waste sorbents are subject to much discussion. This paper proposes to utilized the biosorbent formed after wastewater treatment from copper as an additional fuel. The copper concentration in the filtrate was determined by colorimetric analysis with sodium diethyldithiocarbamate. The cleaning efficiency and sorption capacity of the dry mass of C. kessleri were obtained by calculation. The maximum sorption capacity for Cu2+ ions was 4.2 mg/g. The purification efficiency reached 87% at an initial concentration of Cu2+ ions of 97 mg/L. Tests to estimate the specific heat of combustion of the C. kessleri biomass and waste biosorbents based thereon were carried out by the calorimetric method using a bomb calorimeter. The specific heats of combustion were 22 125 and 21 674 kJ/kg, respectively. A comparison of these values with traditional energy carriers is given. A technological scheme was developed for a waste-free cycle of using C. kessleri to treat wastewater from industrial enterprises with the production of several valuable resources as end products, such as purified water, energy resources, fertilizers, and recycled metals. The results of our study can be applied in technologies for post-treatment of wastewater from various industrial enterprises using biological nonwaste resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Abu Al-Rub, F.A., El-Naas, M.H., Ashour, I., and Al-Marzouqi, M., Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions, Process Biochem., 2006, vol. 41, no. 2, pp. 457–464. https://doi.org/10.1016/j.procbio.2005.07.018

    Article  CAS  Google Scholar 

  2. Banfalvi, G., Cellular Effects of Heavy Metals, Dordrecht: Springer, 2011. https://doi.org/10.1007/978-94-007-0428-2

    Book  Google Scholar 

  3. Danouche, M., El Ghachtouli, N., and El Arroussi, H., Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity, Heliyon, 2021, vol. 7, no. 7, p. e07609. https://doi.org/10.1016/j.heliyon.2021.e07609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fizicheskaia entsiklopediia, v 5 t. (The Physical Encyclopedia, in 5 Volumes), Prokhorov, A.M., Ed., Moscow: Bol’shaia Rossiiskaya Entsiklopediya, 1988–1998.

  5. GOST (State Standard) 4388-72: Drinking water. Methods for determination of copper content, Moscow: Izd-vo Standartov, 1986.

  6. Gupta, S.K., Ansari, F.A., Shriwastav, A., Sahoo, N.K., Rawat, I., and Bux, F., Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels, J. Cleaner Prod., 2016, vol. 115, pp. 255–264. https://doi.org/10.1016/j.jclepro.2015.12.040

    Article  CAS  Google Scholar 

  7. Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., and Agarwal, S., Chemical treatment technologies for waste-water recycling—An overview, RSC Adv., 2012, vol. 2, no. 16, pp. 6380–6388. https://doi.org/10.1039/c2ra20340e

    Article  CAS  Google Scholar 

  8. Islam, S.M.D. and Huda, M.E., Water pollution by industrial effluent and phytoplankton diversity of Shitalakhya River, Bangladesh, J. Sci. Res., 2016, vol. 8, no. 2, pp. 191–198. https://doi.org/10.3329/jsr.v8i2.26402

    Article  CAS  Google Scholar 

  9. Javanbakht, V., Alavi, S.A., and Zilouei, H., Mechanisms of heavy metal removal using microorganisms as biosorbent, Water Sci. Technol., 2014, vol. 69, no. 9, pp. 1775–1787. https://doi.org/10.2166/wst.2013.718

    Article  CAS  PubMed  Google Scholar 

  10. Li, R., Wen, Ya., Lin, G., Meng, C., He, P., and Wang, F., Different sources of copper effect on intestinal epithelial cell: Toxicity, oxidative stress, and metabolism, Metabolites, 2019, vol. 10, no. 1, p. 11. https://doi.org/10.3390/metabo10010011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Makareviciene, V. and Sendzikiene, E., Application of microalgae biomass for biodiesel fuel production, Energies, 2022, vol. 15, no. 11, p. 4178. https://doi.org/10.3390/en15114178

    Article  CAS  Google Scholar 

  12. Malhotra, N., Ger, Tz.-R., Uapipatanakul, B., Huang, J.-Ch., Chen, K.H., and Hsiao, Ch.-D., Review of copper and copper nanoparticle toxicity in fish, Nanomaterials, 1126, vol. 10, no. 6, p. 1126. https://doi.org/10.3390/nano10061126

  13. Milinki, E., Molnár, S., Kiss, A., Virág, D., and Pénzes-Kónya, E., Study of microelement accumulating characteristics of microalgae, Acta Botanica Hung., 2011, vol. 53, nos. 1–2, pp. 159–167. https://doi.org/10.1556/abot.53.2011.1-2.15

    Article  Google Scholar 

  14. Ol’shanskaya, L.N., Sobgayda, N.A., and Valiyev, R.Sh., Extraction of heavy metals from polluted waters with adsorbents and phytosorbents, Ekol. Prom-st’ Ross., 2015, vol. 19, no. 11, pp. 18–23. https://doi.org/10.18412/1816-0395-2015-11-18-23

    Article  Google Scholar 

  15. Papirio, S., Frunzo, L., Mattei, M.R., Ferraro, A., Race, M., D’acunto, B., Pirozzi, F., and Esposito, G., Heavy metal removal from wastewaters by biosorption: Mechanisms and modeling, Sustainable Heavy Metal Remediation, Environmental Chemistry for a Sustainable World, Cham: Springer, 2017, vol. 8, pp. 25–63. https://doi.org/10.1007/978-3-319-58622-9_2

    Book  Google Scholar 

  16. Pattnaik, P., Dangayach, G.S., and Bhardwaj, A.K., A review on the sustainability of textile industries wastewater with and without treatment methodologies, Rev. Environ. Health, 2018, vol. 33, no. 2, pp. 163–203. https://doi.org/10.1515/reveh-2018-0013

    Article  CAS  PubMed  Google Scholar 

  17. Petrovič, A. and Simonič, M., Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana, Int. J. Environ. Sci. Technol., 2016, vol. 13, no. 7, pp. 1761–1780. https://doi.org/10.1007/s13762-016-1015-2

    Article  CAS  Google Scholar 

  18. Politaeva, N. and Badenko, V., Magnetic and electric field accelerate phytoextraction of copper Lemna minor duckweed, PLoS One, 2021, vol. 16, no. 8, p. e0255512. https://doi.org/10.1371/journal.pone.0255512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Politaeva, N., Kuznetsova, T., Smyatskaya, Yu., Atamaniuk, I., and Trukhina, E., Chlorella microalga biomass cultivation for obtaining energy in climatic conditions of St. Petersburg, International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017, Murgul, V. and Popovic, Z., Eds., Advances in Intelligent Systems and Computing, Cham: Springer, 2017, vol. 692, pp. 555–562. https://doi.org/10.1007/978-3-319-70987-1_59

  20. Politayeva, N.A., Smyatskaya, Yu.A., Dolbnya, I.V., Kasobov, L.S., Rakhimov, D.B., and Zaripova, D.A., Research of pH influence on sorption properties of sorbents on a basis of residual biomass of microalgae Chlorella sorokiniana and duckweed Lemna minor, E3S Web Conf., 2019, vol. 124, p. 01050. https://doi.org/10.1051/e3sconf/201912401050

  21. Politaeva, N.A., Smyatskaya, Yu.A., and Tatarintseva, E.A., Using adsorption material based on the residual biomass of Chlorella sorokiniana microalgae for wastewater purification to remove heavy metal ions, Chem. Pet. Eng., 2020, vol. 55, nos. 11–12, pp. 907–912. https://doi.org/10.1007/s10556-020-00712-z

    Article  CAS  Google Scholar 

  22. Rissoni Toledo, A.G., Reyes Andrade, J.C., Palmieri, M.C., Bevilaqua, D., and Pombeiro Sponchiado, S., Innovative method for encapsulating highly pigmented biomass from Aspergillus nidulans mutant for copper ions removal and recovery, PLoS One, 2021, vol. 16, no. 11, p. e0259315. https://doi.org/10.1371/journal.pone.0259315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sarwer, A., Hamed, S.M., Osman, A.I., Jamil, F., Al-Muhtaseb, A.H., Alhajeri, N.S., and Rooney, D.W., Algal biomass valorization for biofuel production and carbon sequestration: A review, Environ. Chem. Lett., 2022, vol. 20, no. 5, pp. 2797–2851. https://doi.org/10.1007/s10311-022-01458-1

    Article  CAS  Google Scholar 

  24. Smyatskaya, Yu.A., Fazullina, A.A., Politaeva, N.A., Zhazhkov, V.V., Pavlushkina, Yu.E., and Dolbnya, I.V., The use and utilization of chitosan sorbents–The residual biomass of microalgae Chlorella sorokiniana, Ekol. Prom-st’ Ross., 2019a, vol. 23, no. 9, pp. 18–23. https://doi.org/10.18412/1816-0395-2019-9-18-23

    Article  Google Scholar 

  25. Smyatskaya, Yu.A., Fazullina, A.A., Politaeva, N.A., Chusov, A.N., and Bezborodov, A.A., Wastewater treatment of iron(III) ions with residual biomass of microalgae Chlorella sorokiniana, Ecol. Ind. Russia, 2019b, vol. 23, no. 6, pp. 22–27. https://doi.org/10.18412/1816-0395-2019-6-22-27

    Article  Google Scholar 

  26. Tawfik, A., Ismail, S., Elsayed, M., Qyyum, M.A., and Rehan, M., Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives, Chemosphere, 2022, vol. 296, p. 133812. https://doi.org/10.1016/j.chemosphere.2022.133812

    Article  CAS  PubMed  Google Scholar 

  27. Vardhan, K.H., Kumar, P.S., and Panda, R.C., A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives, J. Mol. Liq., 2019, vol. 290, p. 111197. https://doi.org/10.1016/j.molliq.2019.111197

    Article  CAS  Google Scholar 

  28. Worch, E., Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, Berlin: De Gruyter, 2012. https://doi.org/10.1515/9783110240238

    Book  Google Scholar 

  29. Zibarev, N.V., Politaeva, N.A., and Andrianova, M.Yu., Use of Chlorella sorokiniana (Chlorellaceae, Chlorellales) microalgae for purification of brewing-industry wastewaters, Biol. Bull., 2022, vol. 49, no. 10, pp. 1776–1780. https://doi.org/10.1134/S1062359022100211

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation under the project “Technological Challenges and Socioeconomic Transformation in the Context of Green Transitions” (agreement no. 75-15-2022-1136 dated July 1, 2022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Politaeva, I. V. Illin, A. M. Oparina or A. S. Donetskova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Batrukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politaeva, N.A., Illin, I.V., Oparina, A.M. et al. New Energy Approaches to the Use of Waste Biosorbents of the Microalgae Chlorella kessleri (Chlorellaceae, Chlorellales). Biol Bull Russ Acad Sci 50, 2596–2602 (2023). https://doi.org/10.1134/S1062359023100114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023100114

Keywords:

Navigation