Log in

Evolution of Mammalian Diversity in the Late Pleistocene–Middle Holocene of the Mountainous Regions of Northern Eurasia: Between Two Interglacials

  • EVALUATION OF STABILITY OF BIOLOGICAL SYSTEMS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

For the first time, reconstruction was carried out and a comparative analysis of the evolution of the parameters of biological diversity (species richness, entropy, dominance index, measure of organization, etc.) of mammalian complexes of six mountain regions of Eurasia in the Late Pleistocene–Holocene was performed. It was shown that their reactions to the MIS 5e and MIS 1 interglacial conditions were fundamentally different, which does not allow us to make direct extrapolations in predicting the reaction of modern fauna to future climate changes. Mountain fauna in MIS 3 and the first half of MIS 2 combined high biological diversity with high resistance. Maintenance of the relative homeostasis of species richness was probably facilitated by the high functional redundancy of the communities, combined with the high ecological diversity of mountain biotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Álvarez-Lao, D.J. and Méndez, M., Latitudinal gradients and indicator species in ungulate paleoassemblages during the MIS3 in W Europe, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2016, no. 449, pp. 455–462.

  2. Astakhov, V.I., Nazarov, D.V., Semenova, L.R., Spiridonov, M.A., and Shkatova, V.K., On the problem of map** the northern Pleistocene, Reg. Geol. Metal., 2015, no. 62, pp. 20–33.

  3. Bachura, O. and Kosintsev, P., Late Pleistocene and Holocene small- and large-mammal faunas from the Northern Urals, Quat. Int., 2007, vol. 160, pp. 121–128.

    Article  Google Scholar 

  4. Bir, S., Kibernetika i upravlenie proizvodstvom (Cybernetics and Production Management), Moscow: Fizmatgiz, 1963.

  5. Bozhkin, S.V. and Parshin, D.A., Fraktaly i mul’tifraktaly (Fractals and Multifractals), Izhevsk: NITs Regulyarnaya i khaoticheskaya dinamika, 2001.

  6. Bray, J.R. and Curtis, J.T., An ordination of the upland forest communities of southern Wisconsin, Ecol. Monogr., 1957, vol. 27, pp. 325–349.

    Article  Google Scholar 

  7. Bulgakov, N.G. and Levich, A.P., Description, origin, and use of rank distributions in ecology of communities, Vestn. Mosk. Univ., Ser. 16: Biol., 2005, no. 1, pp. 18–24.

  8. Butchart, S.H.M., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J.P.W., Almond, R.E.A., Baillie, J.E.M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, A.M., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R.D., Hockings, M., Kapos, V., Lamarque, J., Francois, L.F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Morcillo, M.H., Oldfield, Th.E.E., Pauly, D., Quader, S., Revenga, C., Sauer, J.R., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.D., Vié, J.Ch., and Watson, R., Global biodiversity: indicators of recent declines, Science, 2010, vol. 5982, no. 328, pp. 1164–1168.

    Article  CAS  Google Scholar 

  9. Chernyshev, I.V., Lebedev, V.A., Bubnov, S.N., Arutyunyan, E.V., Bairova, E.D., Gol’tsman, Yu.V., Medvedeva, E.S., Oleinikova, T.I., and Chugaev, A.V., Recent volcanism of the Caucasus and the patterns of its spatiotemporal manifestations (according to geochronological data), in Izmenenie okruzhayushchei sredy i klimata. Prirodnye i svyazannye s nimi tekhnogennye katastrofy (Changes in the Environment and Climate. Natural and Related Technological Disasters), vol. 2: Noveishii vulkanizm Severnoi Evrazii: zakonomernosti razvitiya, vulkanicheskaya opasnost’, svyaz’ s glubinnymi protsessami i izmeneniyami prirodnoi sredy i klimata (Recent Volcanism of Northern Eurasia: Development Patterns, Volcanic Hazard, and Relationship with Deep Processes and Changes in Natural Environment and Climate), Kovalenko, V.I., Yarmolyuk, V.V., and Bogatikov, O.A., Eds., Moscow: IGEM RAN, IFZ RAN, 2008, pp. 206–234.

  10. Crees, J.J., Carbone, C., Sommer, R.S., Benecke, N., and Turvey, S.T., Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene, Proc. R. Soc. B., 2016, vol. 283, p. 20152152.

    Article  CAS  Google Scholar 

  11. Danukalova, G.A., Yurin, V.I., Kosintsev, P.A., Osipova, E.M., and Kurmanov, R.G., Biostratigraphic studies of the Upper Pleistocene and Holocene sediments of the Sikiyaz-Tamak 7 Cave (Southern Urals, Russia), Geol. Vestn., 2018, no. 1, pp. 144–161.

  12. Davies, W., van Andel, T.H., and Weninger, B., The human presence in Europe during the last glacial period I: human migrations and the changing climate, in Neanderthals and Modern Humans in the European Landscape during the Last Glaciation, Van Andel, T., Van Andel, T.H., and Davies, W., Eds., McDonald Institute for Archaeological Research, Retrieved, 2003, pp. 31–56.

  13. Davison, M.L., Introduction to multidimensional scaling and its applications, Appl. Psychol. Measurement, 1983, vol. 7, pp. 373–379.

    Article  Google Scholar 

  14. Dinnis, R., Pate, A., and Reynolds, N., Mid-to-late marine isotope stage 3 mammal faunas of Britain: a new look, Proc. Geol. Assoc., 2016, vol. 127, pp. 435–444.

    Article  Google Scholar 

  15. Discamps, E. and Royer, A., Reconstructing palaeoenvironmental conditions faced by mousterian hunters during MIS5 to 3 in southwestern France: a multi-scale approach using data from large and small mammal communities, Quat. Int., 2017, vol. 433, pp. 64–87.

    Article  Google Scholar 

  16. Evolyutsiya ekosistem Evropy pri perekhode ot pleistotsena k golotsenu (24–8 tys. l. n.) (Evolution of Ecosystems of Europe during the Transition from Pleistocene to Holocene (24–8 Kyr)), Markov, A.K. and van Kolfskhoten, T., Eds., Moscow: KMK, 2008.

  17. Fadeeva, T., Gimranov, D., and Kosintsev, P., New data on Late Pleistocene mammalian fauna from Ignatievskaya cave, Southern Urals, in Quaternary Stratigraphy and Hominids around Europe: Tautavel (Eastern Pyrenees): Int. Conf. INQUA-SEQS 2017 (Tautavel, France, September 10–15,2017), Ufa: Tautavel, 2017, pp. 61–62.

  18. Fadeeva, T.V., Kosintsev, P.A., and Gimranov, D.O., Mammals of the mountainous part of the South Urals in the last interglacial period, Zool. Zh., 2019, vol. 98, no. 11, pp. 1304–1322.

    Google Scholar 

  19. Fernández-García, M., López-García, J.M., and Lorenzo, C., Palaeoecological implications of rodents as proxies for the Late Pleistocene-Holocene environmental and climatic changes in northeastern Iberia, Comptes Rendus—Palevol, 2016, vol. 15, pp. 707–719.

    Article  Google Scholar 

  20. Galakhov, V.P., Kolebaniya lednikov i izmenenie klimata v pozdnem golotsene po materialam issledovanii lednikov i lednikovykh otlozhenii basseina Aktru (Tsentral’nyi Altai, Severo-Chuiskii khrebet): monografiya (Fluctuations of Glaciers and Climate Change in the Late Holocene according to the Results of Studies of Glaciers and Glacial Deposits of the Aktru Basin (Central Altai, the Severo-Chuya Range): A Monograph), Galakhov, V.P., Nazarov, A.N., and Kharlamova, N.F., Barnaul: Alt. Univ., 2005.

  21. Glückert, G., On Pleistocene glaciations in the German Alpine foreland, Bull. Geol. Soc. Finl., 1974, vol. 46, pp. 117–131.

    Article  Google Scholar 

  22. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., Past: paleontological statistics software package for education and data analysis, Palaeontol. Electr., 2001, vol. 4, pp. 1–9.

    Google Scholar 

  23. von Foerster, H., On self-organizing systems and their environments, in The Interdisciplinary Symposium on Self-Organizing Systems, May 5,1959, Chicago, Illinois, in Self-Organizing Systems, Yovits, M.C. and Cameron, S., Eds., London: Pergamon Press, 1960, pp. 31–50.

  24. Jacobs, Z., Li, B., Shunkov, M.V., Kozlikin, M.B., Bolikhovskaya, N.S., Agadjanian, A.K., Uliyanov, V.A., Vasiliev, S.K., O’Gorman, K., Derevianko, A.P., and Roberts, R.G., Timing of archaic hominin occupation of Denisova Cave in southern Siberia, Nature, 2019, vol. 565, pp. 594–599.

    Article  CAS  Google Scholar 

  25. Kerimov, M.G., On the Pleistocene glaciation of the Greater and Lesser Caucasus (within Azerbaijan), Uch. Zap. Ros. Gos. Gidromet. Univ., 2008, no. 6, pp. 54–59.

  26. Haken, G., Sinergetika (Synergetics), Moscow: Mir, 1991.

  27. Kosintsev, P.A., Gasilin, V.V., Gimranov, D.O., and Bachura, O.P., Carnivores (Mammalia, Carnivora) of the Urals in the Late Pleistocene and Holocene, Quat. Int., 2016, vol. 420, pp. 145–155.

    Article  Google Scholar 

  28. Kotlyakov, V.M., Dyakova, A.M., Koryakin, V.S., Kravtsova, V.I., Osipova, G.B., Varnakova, G.M., Vinogradov, V.N., Vinigradov, O.N., and Zverkova, N.M., Glaciers of the former Soviet Union, in Glaciers of Europe. Satellite Image Atlas of Glaciers of the World, Williams, R.S., Jr. and Ferrigno, J.G., Eds., U.S. Geological Survey Professional Paper, 1993, 1386, F-1, pp. 1–123.

  29. Kramarenko, S.S., The method of using entropy-information analysis for quantitative traits, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2005, vol. 7, no. 1, pp. 242–247.

    Google Scholar 

  30. Kuitems, M., van Kolfschotena, T., Tikhonovd, A.N., and van der Plichta, J., Woolly mammoth δ13C and δ15N values remained amazingly stable throughout the last ∼50000 years in north-eastern Siberia, Quat. Int., 2019, vol. 500, pp. 120–127.

    Article  Google Scholar 

  31. Kuzmin, Y.V., Kosintsev, P.A., Vasiliev, S.K., Fadeeva, T.V., and Hodgins, G.W.L., The northernmost and latest occurrence of the fossil porcupine (Hystrix brachyura vinogradovi Argyropulo, 1941) in the Altai Mountains in the Late Pleistocene (ca. 32.000–41.000 cal BP), Quat. Sci. Rev., 2017, vol. 161, pp. 117–122.

    Article  Google Scholar 

  32. Levich, A.P., Information as system structure, Semiotika Informatsiya, 1978, no. 10, pp. 116–132.

  33. Lisiecki, L.E. and Raymo, M.E., A Pliocene-Pleistocene stack of 57 globally distributed benthic D 18 O records, Paleoceanography, 2005, vol. 1, no. 20, pp. 1–17.

    Google Scholar 

  34. Magomedova, M.Z., Bioecological substantiation of the revision of glaciation of the Caucasus, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Makhachkala: Dag. Gos. Univ., 2009.

  35. Mandel’brot, B., Information theory and psychological theory of word frequencies, in Matematicheskie metody v sotsial’nykh naukakh (Mathematical Methods in Social Sciences), Moscow: Progress, 1973, pp. 326–337.

  36. Markova, A.K., Smirnov, N.G., Kozharinov, A.V., Kazantseva, N.E., Simakova, A.N., and Kitaev, L.M., Late Pleistocene distribution and diversity of mammals in Northern Eurasia (PALEOFAUNA database), Paleontol. Evol., 1995, vol. 28/29, pp. 5–143.

    Google Scholar 

  37. Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A., The alpine LGM in the boreal ice-sheets game, Sci. Rep., 2017, vol. 7, p. 2078.

    Article  CAS  Google Scholar 

  38. Mourelle, C. and Ezcurra, E., Differentiation diversity of Argentine cacti and its relationship to environmental factors, J. Veg. Sci., 1997, vol. 8, pp. 547–558.

    Article  Google Scholar 

  39. Okishev, P.A., Rel’ef i oledenenie Russkogo Altaya (Relief and Glaciation of Russian Altai), Tomsk: Tomsk. Gos. Univ., 2011.

  40. Olson, D.M. and Dinerstein, E., The Global 200: priority ecoregions for global conservation, Ann. Missouri Bot. Garden, 2002, vol. 89, pp. 125–126.

    Article  Google Scholar 

  41. Pavelková Řičánková, V., Robovský, J., Riegert, J., and Zrzavý, J., Regional patterns of postglacial changes in the Palearctic mammalian diversity indicate retreat to Siberian steppes rather than extinction, Sci. Rep., 2015, vol. 5, p. 12682.

    Article  CAS  Google Scholar 

  42. Puzachenko, Yu.G., Invariants of a dynamic geosystem, Izv. Akad. Nauk, Ser. Geogr., 2010, no. 5, pp. 6–16.

  43. Puzachenko, A.Yu., Invariants and morphological diversity dynamics (as exemplified by the mammal skull), Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Inst. Probl. Ekol. Evol. Ross. Akad. Nauk, 2013.

  44. Puzachenko, Yu.G., The thermodynamic basis of the doctrine of the biosphere and noosphere by V.I. Vernadsky (on the 150th anniversary of Academician V.I. Vernadsky), Izv. Akad. Nauk, Ser. Geogr., 2013, no. 4, pp. 5–20.

  45. Puzachenko, Yu.G., Rank distributions in ecology and non-extensive thermodynamics, in Aspekty bioraznoobraziya (Aspects of Biodiversity), Sb. Tr. Zool. Muzeya MGU, Moscow: KMK, 2016, vol. 54, no. 2, pp. 401–830.

  46. Puzachenko, Yu.G., Theoretical and methodological basis of long-term ecological and geographical studies in reserves, Vopr. Geogr., 2017, vol. 143, pp. 192–233.

    Google Scholar 

  47. Puzachenko, A.Yu. and Markova, A.K., Mammal diversity during the Pleistocene–Holocene transition in Eastern Europe, Integrat. Zool., 2014, vol. 9, pp. 461–470.

    Article  Google Scholar 

  48. Puzachenko, A.Y. and Markova, A.K., Diversity dynamics of large- and medium-sized mammals in the Late Pleistocene and the Holocene on the East European Plain: systems approach, Quat. Int., 2016, vol. 420, pp. 391–401.

    Article  Google Scholar 

  49. Puzachenko, A.Y. and Markova, A.K., Evolution of mammal species composition and species richness during the Late Pleistocene–Holocene transition in Europe: a general view at the regional scale, Quat. Int., 2019. https://doi.org/10.1016/j.quaint.2018.12.025

  50. Ramsey, B.C. and Lee, Sh., Recent and planned developments of the program OxCal, Radiocarbon, 2013, vol. 55, pp. 720–730.

    Article  CAS  Google Scholar 

  51. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, E.H.L.R., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reime, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., and van der Plicht, J., Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 2013, vol. 55, pp. 1869–1887.

    Article  CAS  Google Scholar 

  52. Ricotta, C. and Podani, J., On some properties of the Bray–Curtis dissimilarity and their ecological meaning, Ecol. Compl., 2017, vol. 31, pp. 201–205.

    Article  Google Scholar 

  53. Royer, R.R., Montuire, S., Legendre, S., Discamps, E., Jeannet, M., and Lecuyer, Ch., Investigating the influence of climate changes on rodent communities at a regional-dcale (MIS1-3, Southwestern France), PLoS One, 2016, vol. 11, no. 1. e0145600.

    Article  CAS  Google Scholar 

  54. Rudaya, N., Vasiliev, S., Viola, B., Talamo, S., and Markin, S., Palaeoenvironments during the period of the Neanderthals settlement in Chagyrskaya cave (Altai Mountains, Russia), Palaeogeogr., Palaeoclimatol., Palaeoecol., 2017, vol. 467, pp. 265–276.

    Article  Google Scholar 

  55. Schwartz-Narbonne, R., Longstaffe, F.J., Kardynal, K.J., Druckenmiller, P., Hobson, K.A., Jass, C.N., Metcalfe, J.Z., and Zazula, G., Reframing the mammoth steppe: insights from analysis of isotopic niches, Quat. Sci. Rev., 2019, vol. 215, pp. 1–21.

    Article  Google Scholar 

  56. Secretariat of the Convention on Biological Diversity. The Addis Ababa Principles and Guidelines for the Sustainable Use of Biodiversity, Montreal: Secretariat of the Convention on Biological Diversity, 2004.

  57. Serrat, D. and Ventura, J., Glaciers of the Pyrenees, Spain and France, in Glaciers of Europe. Satellite Image Atlas of Glaciers of the World. U.S., Williams, R.S., Jr. and Ferrigno, J.G., Eds., Geol. Survey Prof. Paper, 1993, 1386, E-2, pp. 49–61.

  58. Sheinkman, V.S. and Plyusin, V.M., Glaciation of the north of Western Siberia—controversial issues and ways of their solution, Led Sneg, 2015, no. 1 (129), pp. 103–120.

  59. Schroeder, M., Fraktaly, khaos, stepennye zakony: miniatyury iz beskonechnogo raya (Fractals, Chaos, and Power Laws: Miniatures from an Infinite Paradise), Izhevsk: NITs Regulyarnaya i khaoticheskaya dinamika, 2001.

  60. Smirnov, N.G., Bol’shakov, V.N., Kosintsev, P.A., Panova, N.K., Korobeinikov, Yu.I., Ol’shvang, V.N., Erokhin, N.G., and Bykova, G.V., Istoricheskaya ekologiya zhivotnykh gor Yuzhnogo Urala (Historical Ecology of Animals of Southern Urals Mountains), Sverdlovsk: Ural. Otd. Akad. Nauk SSSR, 1990.

  61. Smith, F., Biological diversity, ecosystem stability and economic development, Ecol. Econ., 1996, vol. 3, no. 16, pp. 191–203.

    Article  Google Scholar 

  62. Sokal, R.R. and Rohlf, F.J., Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed., New York: W.H. Freeman and Co., 1995.

    Google Scholar 

  63. Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Svend, F., Gataullin, V., Henriksen, M., Christian, H., Houmark-Nielsen, M., Hubberten, H.W., Ingólfsson, Ó., Jakobsson, M., Kjær, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, Ch., Siegert, M.J., Spielhagen, R.F., and Stein, R., Late quaternary ice sheet history of northern Eurasia, Quat. Sci. Rev., 2004, vol. 23, nos. 11–13, pp. 1229–1271.

    Article  Google Scholar 

  64. Zasadni, J. and Klapyta, P., The Tatra Mountains during the Last Glacial Maximum, J. Maps, 2014, vol. 10, no. 3, pp. 440–456.

    Article  Google Scholar 

Download references

Funding

This work was carried out in the framework of the program for the study of mammalian fauna of the Mikulin interglacial region with the financial support of the Russian Foundation for Basic Research (project no. 17-01-00100-a), as well as under the program “Assessment of Physical, Geographical, Hydrological, and Biotic Changes in the Environment and Their Consequences for Creating the Basics of Sustainable Nature Management” of a State Assignment of the Institute of Geography, Russian Academy of Sciences (project no. 0148-2019-0007, AAAA-A19-119021990093-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Puzachenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzachenko, A.Y., Markova, A.K. Evolution of Mammalian Diversity in the Late Pleistocene–Middle Holocene of the Mountainous Regions of Northern Eurasia: Between Two Interglacials. Biol Bull Russ Acad Sci 47, 153–171 (2020). https://doi.org/10.1134/S1062359020020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359020020077

Navigation