Log in

Determination and Quantification of Cetirizine Dihydrochloride in Pharmaceutical Formulations and Biological Fluids Through Fluorescence Quenching of Eosin Y: Application to Content Uniformity Test

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A simple, fast, sensitive, cost-effective, and well-proven spectrofluorimetric method has been developed for the quantification of cetirizine dihydrochloride (CTZ). The quenching effect of CTZ on the fluorescence intensity of Eosin Y was utilized to generate an ion-pair complex that can be detected at 549 nm using a 301 nm excitation wavelength in the presence of glycine buffer (pH 4.0) for the method development. The factors that influence reactions were thoroughly examined and optimized. With a determination coefficient of 0.9996, the fluorescence quenching value was linear to CTZ concentration in the range of 1–40 µg/mL. The estimated detection and quantification limits were determined to be 0.02 and 0.08 µg/mL, respectively. The method selectivity was validated by analyzing the effects of excipients, and no interference was found. The established approach was applied to determine the presence of CTZ in products available on the market as well as in biological samples. The methodology was validated using guidelines from the International Conference on Harmonization, and percent recoveries for pharmaceutical items varied from 90.6 to 103.5% and for biological fluids from 97.9 to 102.5%. The method has been successfully used for the content uniformity test with high percent recovery and low relative standard deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Corsico, A.G., Leonardi, S., Licari, A., Marseglia, G., Miraglia del Giudice, M., Peroni, D.G., and Ciprandi, G., Multidiscip. Respir. Med., 2019, vol. 14, p. 40.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bajerski, L., Sangoi, M.D.S., Barth, T., Diefenbach, I.F., Dalmora, S.L., and Cardoso, S.G., Quim. Nova, 2010, vol. 33, no. 1, p. 114.

    Article  CAS  Google Scholar 

  3. Leistner, A., Haerling, S., Kreher, J.D., Becker, I., Jung, D., and Holzgrabe, U., J. Pharm. Biomed. Anal., 2020, vol. 189, p. 113425.

    Article  CAS  PubMed  Google Scholar 

  4. Ibrahim, F., Sharaf El-Din, M.K., Eid, M., and Wahba, M.E.K., Int. J. ChemTech Res., 2011, vol. 2, no. 8, p. 2056.

    CAS  Google Scholar 

  5. Jaber, A.M.Y., Al Sherife, H.A., Al Omari, M.M., and Badwan, A.A., J. Pharm. Biomed. Anal., 2004, vol. 36, no. 2, p. 341.

    Article  CAS  PubMed  Google Scholar 

  6. El-Kommos, M.E., El-Gizawy, S.M., Atia, N.N., and Hosny, N.M., Anal. Chem. Res., 2015, vol. 3, p. 1.

    Article  CAS  Google Scholar 

  7. Patil, R.H., Hegde, R.N., and Nandibewoor, S.T., Colloids Surf., B., 2011, vol. 83, no. 1, p. 133.

    Article  CAS  Google Scholar 

  8. Aly, F.A., Nahed, E.E., Elmansi, H., and Nabil, A., Chem. Cent. J., 2017, vol. 11, p. 99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karakuş, S., Küçükgüzel, İ., and Küçükgüzel, Ş.G., J. Pharm. Biomed. Anal., 2008, vol. 46, no. 2, p. 295.

    Article  PubMed  Google Scholar 

  10. Ulu, S.T., J. Food Drug Anal., 2010, vol. 18, no. 6, p. 440.

    CAS  Google Scholar 

  11. Bhatia, N.M., Ganbavale, S.K., and More, H.N., Asian J. Pharm., 2008, vol. 2, no. 3.

  12. Rahman, H., Int. J. Pharm. Pharm. Sci., 2017, vol. 9, p. 1.

    Article  Google Scholar 

  13. Khan, M.N., Irum, and Mursaleen, M., Luminescence, 2021, vol. 36, no. 2, p. 515.

    Article  CAS  PubMed  Google Scholar 

  14. Derayea, S.M., Gahlan, A.A., Omar, M.A., Saleh, G.A., and Haredy, A.M., Luminescence, 2020, vol. 35, no. 7, p. 1028.

    Article  CAS  PubMed  Google Scholar 

  15. Kabra, P., Nargund, L.V.G., and Murthy, M.S., Trop. J. Pharm. Res., 2014, vol. 13, no. 7, p. 1141.

    Article  CAS  Google Scholar 

  16. Dhongle, P.S., Sahare, S.J., Dhongle, S.S., Mundhey, A.S., and Wate, S.P., Res. J. Pharm. Technol., 2011, vol. 4, no. 9, p. 1471.

    Google Scholar 

  17. El-Didamony, A.M. and Ramadan, G.M., SN Appl. Sci., 2020, vol. 2, no. 4, p. 723.

    CAS  Google Scholar 

  18. Williams, R.L., Adams, W.P., Poochikian, G., and Hauck, W.W., Pharm. Res., 2002, vol. 19, no. 4, p. 359.

    Article  CAS  PubMed  Google Scholar 

  19. The United States Pharmacopeia 30, the National Formulary 25, Rockville: US Pharmacopeial Convention, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Akbar Jan.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah Mansoor, Jan, F.A. & Ullah, N. Determination and Quantification of Cetirizine Dihydrochloride in Pharmaceutical Formulations and Biological Fluids Through Fluorescence Quenching of Eosin Y: Application to Content Uniformity Test. J Anal Chem 78, 965–974 (2023). https://doi.org/10.1134/S1061934823080129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823080129

Keywords:

Navigation