Log in

Solid-Phase Extraction Assisted Dispersive Liquid–Liquid Microextraction of Pyrene and Phenanthrene

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles-chitosan assisted dispersive liquid–liquid microextraction (DLLME) was utilized to microextraction of ultra-traces of pyrene and phenanthrene from seawater samples of Chabahar Bay prior to HPLC analysis with UV detection. The analytes dispersed into organic phase with the assistance of zinc oxide nanoparticles-chitosan in the modified DLLME method. The effect of factors on extraction efficiency, including amount of zinc oxide nanoparticles-chitosan, amount of chitosan, amount of zinc oxide nanoparticles, type and volume of extraction and dispersive solvents, extraction time and rate, and time of centrifugation, was optimized and investigated. Under optimized conditions, good linearity ranges of 1.0–150 µg/L for phenanthrene and 5–75 µg/L for pyrene were achieved. Based on standard deviation to slope of calibration curve ratio of 3, the limits of detection were 0.4 and 1.7 µg/L for phenanthrene and pyrene, respectively. Relative standard deviation was between 1.8–8.8%. The protocol was successfully utilized to the determination of pyrene and phenanthrene in seawater samples of Chabahar Bay. Relative recoveries from 79.0 to 105.0% were observed for the spiked seawater samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Juhasz, A.L. and Naidu, R., Int. Biodeterior. Biodegrad., 2000, vol. 45, p. 57.

    Article  CAS  Google Scholar 

  2. Fretheim, K., J. Agric. Food. Chem., 1976, vol. 24, p. 976.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, K.H., Jahan, S.A., Kabir, E., and Brown, R.J., Environ. Int., 2013, vol. 60, p. 71.

    Article  CAS  PubMed  Google Scholar 

  4. Mollahosseini, A., Alamshahi, M., and Rastegari, M., J. Food. Sci. Technol., 2020, vol. 57, p. 3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Do-Yeong, K., Bo-Eun, L., and Han-Seung, S., Anal. Biochem., 2021, vol. 15, p. 114119.

    Google Scholar 

  6. Krawczyk, T., Czechowicz, D., and Iłowska, J., J. Anal. Chem., 2020, vol. 75, p. 495.

    Article  Google Scholar 

  7. Sheng-Wei, W., Kuo-Hsien, H., Shou-Chieh, H., Su-Hsiang, T., Der-Yuan, W., and Hwei-Fang, C., J. Food Drug Anal., 2019, vol. 27, p. 815.

    Article  Google Scholar 

  8. Hayes, H.V., Wilson, W.B., Sander, L.C., Wise, S.A., and Campigli, A.D., Anal. Methods, 2018, vol. 10, p. 2675.

    Google Scholar 

  9. Yu, Z., Grasso M.F., Sorensen, H.H., and Peng, Z., Microchim. Acta, 2019, vol. 31, p. 391.

    Article  Google Scholar 

  10. Yan, J., Kim, M., Haberl, M., Kwok, H., and Brunswick, P., Anal. Methods, 2018, vol. 10, p. 405.

    Article  CAS  Google Scholar 

  11. Wang, X., Kang, H., and Wu, J., J. Sep. Sci., 2016, vol. 39, p. 1742.

    Article  CAS  PubMed  Google Scholar 

  12. Mollahosseini, A., Alamshahi, M., and Rastegari, M., J. Food Sci. Technol., 2020, vol. 57, p. 3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, S., Shuai, Q., and Pawliszyn, J., Anal. Chem., 2016, vol. 88, p. 8936.

    Article  CAS  PubMed  Google Scholar 

  14. Khajeh, M., Sharifirad, M., Bohlooli, M., and Ghaffari-Moghaddam, M., RSC Adv., 2016, vol. 6, p. 54702.

    Article  CAS  Google Scholar 

  15. Pang, L., Zhang, W., Zhang, W., Chen, P., Yu, J., and Zhu, G.T., RSC Adv., 2017, vol. 7, p. 53720.

    Article  CAS  Google Scholar 

  16. Mirmoghaddam, M., Kaykhaii, M., Hashemi, M., Keikha, A.J., Hashemi, S.H., and Yahyavi, H., J. Chil. Chem. Soc., 2019, vol. 64, p. 4531.

    Article  CAS  Google Scholar 

  17. Ziyaadini, M., Hashemi, S.H., Zahedi, M.M., and Bashande, S., J. Environ. Anal. Chem., 2021, vol. 101, p. 1145.

    Article  CAS  Google Scholar 

  18. Rezaee, M., Assadi, Y., Hosseini, M.-R.M., Aghaee, E., Ahmadi, F., and Berijani, S., J. Chromatogr. A, 2006, vol. 1116, p. 1.

    Article  CAS  PubMed  Google Scholar 

  19. Khajeh, M. and Golzary, A.R., Spectrochim. Acta, Part A, 2014, vol. 131, p. 189.

    Article  CAS  Google Scholar 

  20. Hashemi, S.H., Kaykhaii, M., Keikha, A.J., and Parkaz, A., Anal. Methods, 2018, vol. 10, p. 5707.

    Article  CAS  Google Scholar 

  21. Hashemi, S.H. and Keykha, F., Anal. Methods, 2019, vol. 11, p. 5405.

    Article  CAS  Google Scholar 

  22. Hashemi, S.H. and Keykha, F., Iran. J. Anal. Chem., 2020, vol. 7, p. 21.

    CAS  Google Scholar 

  23. Ng, N.T., Sanagi, M.M., Ibrahim, W.N.W., and Ibrahim, W.A.W., Food Chem., 2017, vol. 222, p. 28.

    Article  CAS  PubMed  Google Scholar 

  24. Kayali-Sayadi, M.N., Rubio-Barroso, S., Cuesta-Jimenez, M.P., and Polo-Díez, L.M., Analyst, 1998, vol. 123, p. 2145.

    Article  CAS  PubMed  Google Scholar 

  25. Sadowska-Rociek, A., Surma, M., and Cieslik, E., Pollut. Res., 2014, vol. 21, p. 1326.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Ziyaadini.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyaadini, M., Hashemi, S.H., Zahedi, M.M. et al. Solid-Phase Extraction Assisted Dispersive Liquid–Liquid Microextraction of Pyrene and Phenanthrene. J Anal Chem 78, 450–455 (2023). https://doi.org/10.1134/S1061934823040172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823040172

Keywords:

Navigation