Log in

Use of Magnetic Carbon Nanocomposites in the Formation of a Recognition Layer of a Piezoelectric Immunosensor for the Determination of Penicillin G

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Conditions for the formation of a recognition layer of a piezoelectric immunosensor based on magnetic carbon nanocomposites (MCNCs) under the action of an external magnetic field are studied. The effects of the size and number of magnetic nanoparticles (MNPs) in the composite on the analytical characteristics of the gravimetric immunosensor are revealed. Scanning electron microscopy is used to determine the average sizes of Fe3O4 magnetic nanoparticles synthesized by coprecipitation. It is noted that the minimum weight and stability of the recognition layer were observed for the nanocomposite obtained at a ratio of carbon nanotubes and MNPs with an average diameter of 22 nm equal to 3 : 1. The formation of peptide bonds between the MCNCs and a penicillin G conjugate was established by IR spectrometry. It was shown that the use of magnetic carbon nanocomposites in the formation of a recognition layer makes it possible to significantly simplify the procedure for preparing a piezoelectric sensor for analysis and reduce its duration from 24 to 1.5 h. The range of the determined antibiotic concentrations is 1–450 ng/mL, the limit of detection is 0.5 ng/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Gupta, B.K., Yadav, A., Koch, P., and Mishra, P., in Biosensors in Food Safety and Quality, Mishra, P. and Sahu, P.P., Eds., Boca Raton: CRC, 2022, p. 37.

    Google Scholar 

  2. Zhang, J., Zhang, X., Wei, X., Xue, Y., Wan, H., and Wang, P., Anal. Chim. Acta, 2021, vol. 1164, p. 338321.

    Article  CAS  PubMed  Google Scholar 

  3. Guliy, O.I., Zaitsev, B.D., Alsowaidi A.K.M., Karavaeva, O.A., Lovtsova, L.G., and Borodina, I.A., Biophysics (Moscow), 2021, vol. 66, no. 4, p. 555.

    Article  CAS  Google Scholar 

  4. Alsowaidi A.K.M., Karavaeva, O.A., and Guliy, O.I., Antibiot. Khimioter., 2022, vol. 67, nos. 1–2, p. 53.

    Google Scholar 

  5. Ermolaeva, T.N., Kalmykova, E.N., and Shashkanova, O.Yu., Russ. J. Gen. Chem., 2008, vol. 78, no. 12, p. 2430.

    Article  CAS  Google Scholar 

  6. Immobilization Strategies: Biomedical, Bioengineering and Environmental Applications, Tripathi, A. and Melo, J.S., Eds., Singapore: Springer, 2021.

    Google Scholar 

  7. Karaseva, N.A. and Ermolaeva, T.N., Talanta, 2014, vol. 120, p. 312.

    Article  CAS  PubMed  Google Scholar 

  8. Pohanka, M., Materials, 2018, vol. 11, no. 3, p. 448.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shukshina, E.I., Farafonova, O.V., Shanin, I.A., Grazhulene, S.S., Eremin, S.A., and Ermolaeva, T.N., Sorbtsionnye Khromatogr. Protsessy, 2018, vol. 18, no. 3, p. 394.

    CAS  Google Scholar 

  10. Tajyani, S. and Babaei, A., J. Electroanal. Chem., 2018, vol. 808, p. 50.

    Article  CAS  Google Scholar 

  11. Santos, A.M., Wong, A., Prado, T.M., Fava, E.L., Fatibello-Filho, O., Sotomayor, M.D.P.T., and Moraes, F.C., Talanta, 2021, vol. 224, p. 121804.

    Article  CAS  PubMed  Google Scholar 

  12. Sohouli, E., Khosrowshahi, E.M., Radi, P., Naghian, E., Rahimi-Nasrabadi, M., and Ahmadi, F., J. Electroanal. Chem., 2020, vol. 877, p. 114503.

    Article  CAS  Google Scholar 

  13. Reddy, K.R., Reddy, P.A., Reddy, C.V., Shetti, N.P., Babu, B., Ravindranadh, K., Shankar, M.V., Reddy, M.C., Soni, S., and Naveen, S., Methods Microbiol., 2019, vol. 46, p. 227.

    Article  CAS  Google Scholar 

  14. Kouhpanji, M.R.Z. and Stadler, B.J.H., Sensors, 2020, vol. 20, no. 9, p. 2554.

    Article  CAS  PubMed  Google Scholar 

  15. Bayramoglu, G., Ozalp, V.C., Oztekin, M., and Arica, M.Y., Talanta, 2019, vol. 200, p. 263.

    Article  CAS  PubMed  Google Scholar 

  16. Pohanka, M., Chem. Pap., 2020, vol. 74, p. 451.

    Article  CAS  Google Scholar 

  17. Wan, Y., Zhang, D., and Hou, B., Biosens. Bioelectron., 2010, vol. 25, p. 1847.

    Article  CAS  PubMed  Google Scholar 

  18. Bizina, E.V., Farafonova, O.V., Zolotareva, N.I., Grazhulene, S.S., and Ermolaeva, T.N., J. Anal. Chem., 2022, vol. 77, no. 4, p. 375.

    Article  Google Scholar 

  19. Grazhulene, S.S., Zolotareva, N.I., Red’kin, A.N., Shilkina, N.N., Mitina, A.A., and Khodos, I.I., Russ. J. Appl. Chem., 2020, vol. 93, no. 1, p. 57.

    Article  CAS  Google Scholar 

  20. Sauerbrey, G., Z. Phys., 1959, vol. 55, p. 206.

    Article  Google Scholar 

  21. Grazhulene, S.S., Zolotareva, N.I., Red’kin, A.N., Shilkina, N.N., Mitina, A.A., and Kolesnikova, A.M., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, p. 1849.

    Article  CAS  Google Scholar 

  22. Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., and Zhu, D., J. Colloid Interface Sci., 2010, vol. 349, p. 293.

    Article  CAS  PubMed  Google Scholar 

  23. Singh, S., Barick, K.C., and Bahadur, D., J. Hazard. Mater., 2011, vol. 192, p. 1539.

    Article  CAS  PubMed  Google Scholar 

  24. Eguilaz, M., Villalonga, R., Yanez-Sedeno, P., and **arron, J.M., Anal. Chem., 2011, vol. 83, p. 7807.

    Article  CAS  PubMed  Google Scholar 

  25. Mikhaylova, M., Kim, D.K., Berry, C.C., Zagorodni, A., Toprak, M., Curtis, A.S.G., and Muhammed, M., Chem. Mater., 2004, vol. 16, no. 12, p. 2344.

    Article  CAS  Google Scholar 

  26. Netto, C.G.C.M., Toma, H.E., and Andrade, L.H., J. Mol. Catal. B: Enzym., 2013, vol. 85, p. 71.

    Article  Google Scholar 

  27. Nartova, Yu.V., Eremin, S.A., and Ermolaeva, T.N., J. Anal. Chem., 2008, vol. 63, no. 12, p. 1191.

    Article  CAS  Google Scholar 

  28. Grazhulene, S.S., Zolotareva, N.I., Red’kin, A.N., Shilkina, N.N., Mitina, A.A., and Khodos, I.I., Russ. J. Appl. Chem., 2020, vol. 93, no. 1, p. 57.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and the Lipetsk Region, project no. 20-43-480001. At the Institute for Problems of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences, the work was carried out within the framework of State Assignment 075-01304-23-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bizina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizina, E.V., Farafonova, O.V., Zolotareva, N.I. et al. Use of Magnetic Carbon Nanocomposites in the Formation of a Recognition Layer of a Piezoelectric Immunosensor for the Determination of Penicillin G. J Anal Chem 78, 488–496 (2023). https://doi.org/10.1134/S1061934823040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823040068

Keywords:

Navigation