Log in

Quantification of Triacetin in a Mixture of Tri-, Di-, Monoacetin and Glycerol by qHNMR Technique

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Glycerol derivative triacetin (TA) has diverse applications in the pharmaceutical, fuel, cosmetic, and food industries. Hence, it is vital to quantify triacetin in a given sample before it can be employed for a suitable commercial application. The conventional HPLC based method of TA quantification is time-consuming, leads to generating liquid waste, and requires unique columns, reference materials, and a suitable detector for the identification of molecules under investigation. To simplify TA quantification, herein, we have proposed a quantitative proton nuclear magnetic resonance (qHNMR) based method which does not require any complicated sample preparation method, sample derivatization, long analysis time, or highly pure reference materials. For TA quantification, an equation based on proton NMR analysis of standard mixtures of TA and glycerol of variable compositions is proposed. To validate the developed method, TA was quantified in samples with its variable concentrations by either qHNMR or HPLC, and the results were found to be comparable (R2 = 0.99). Further, to demonstrate the practical application, the technique was employed to quantify TA formed during acetylation of glycerol with acetic acid at various time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Monteiro, M.R., Kugelmeier, C.L., Pinheiro, R.S., Batalha, M.O., and César, A.S., Renewable Sustainable Energy Rev., 2018, vol. 88, p. 109.

    Article  CAS  Google Scholar 

  2. Kong, P.S., Aroua, M.K., and Daud, W.M.A.W., Renewable Sustainable Energy Rev., 2016, vol. 63, p. 533.

    Article  CAS  Google Scholar 

  3. Das, B. and Mohanty, K., J. Environ. Chem. Eng., 2019, vol. 7, no. 1, p. 102888.

    Article  Google Scholar 

  4. Liu, J., Wang, Z., Sun, Y., Jian, R., Jian, P., and Wang, D., Chin. J. Chem. Eng., 2019, vol. 27, p. 1073.

    Article  CAS  Google Scholar 

  5. Tsukuda, E., Sato, S., Takahashi, R., and Sodesawa, T., Catal. Commun., 2007, vol. 8, p. 1349.

    Article  CAS  Google Scholar 

  6. Barbosa, S.L., Lima, P.C., dos Santos, W.T.P., Klein, S.I., Clososki, G.C., and Caires, F.J., Catal. Comm., 2019, vol. 120, p. 76.

    Article  CAS  Google Scholar 

  7. Okoye, P.U., Abdullah, A.Z., and Hameed, B.H., Renewable Sustainable Energy Rev., 2017, vol. 74, p. 387.

    Article  CAS  Google Scholar 

  8. Zhou, L., Al-Zaini, E., and Adesina, A.A., Fuel, 2013, vol. 103, p. 617.

    Article  CAS  Google Scholar 

  9. Liao, X., Zhu, Y., Wang, S.-G., Chen, H., and Li, Y., Appl. Catal. B: Environ., 2010, vol. 94, nos. 1–2, p. 64.

    Article  CAS  Google Scholar 

  10. Casas, A., Ramos, M.J., Pérez, Á., Simón, A., Lucas-Torres, C., and Moreno, A., Fuel, 2012, vol. 92, no. 1, p. 180.

    Article  CAS  Google Scholar 

  11. Susterea, Z., Kamparea, R., Liepinsb, E., and Kampars, V., J. Anal. Chem., 2014, vol. 69, p. 763.

    Article  Google Scholar 

  12. de Jesus, M.P.M., Melo, L.N., da Silva, J.P.V., Crispim, A.C., Figueiredo, I.M., Bortoluzzi, J.H., and Meneghetti, S.M.P., Energy Fuels, 2015, vol. 29, p. 7343.

    Article  CAS  Google Scholar 

  13. Cerceau, C.I., Barbosa, L.C.A., Alvarenga, E.S., Ferreira, A.G., and Thomasi, S.S., Talanta, 2016, vol. 161, p. 71.

    Article  CAS  PubMed  Google Scholar 

  14. Kaur, A., Prakash, R., and Ali, A., Talanta, 2018, vol. 178, p. 1001.

    Article  CAS  PubMed  Google Scholar 

  15. Li, F.-F., Liu, H.-X., Zhang, Y.-L., and Wang, S.-Q., Anal. Methods, 2019, vol. 11, p. 6176.

    Article  CAS  Google Scholar 

  16. Ghesti, G.F., de Macedo, J.L., Resck, I.S., Dias, J.A., and Dias, S.C.L., Energy Fuels, 2007, vol. 21, no. 5, p. 2475.

    Article  CAS  Google Scholar 

  17. Nebel, B., Mittelbach, M., and Uray, G., Anal. Chem., 2008, vol. 80, p. 8712.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to SAI Lab (Thapar Institute of Engineering and Technology, Patiala, India) for NMR study.

Funding

We acknowledge DST-SERB (Ref no.: EMR/2014/000090) and CSIR (Ref no.: 01(2964)/18/EMR-II) for the financial support; DST-FIST (Ref. no.: SR/FST/CSI-217/2010) for funding instrumentation facility in the School of Chemistry and Biochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Ali.

Ethics declarations

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abida, K., Ali, A. Quantification of Triacetin in a Mixture of Tri-, Di-, Monoacetin and Glycerol by qHNMR Technique. J Anal Chem 78, 480–487 (2023). https://doi.org/10.1134/S1061934823040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823040032

Keywords:

Navigation