Log in

Automated Liquid–Liquid Microextraction of Fluoroquinolones for Their Subsequent Chromatographic Determination

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

An automated method is developed for dispersive liquid–liquid microextraction of fluoroquinolone antibiotics based on the principles of stepwise injection analysis. The method involves the dispersion of the extractant by the gas phase, formed in situ in the extraction chamber of the flow analyzer. A deep eutectic solvent based on a terpenoid and a mixture of hydrophilic and hydrophobic carboxylic acids is studied as an extractant for the isolation and preconcentration of fluoroquinolones, and a possibility of its use is substantiated. Hydrophilic carboxylic acid in the composition of the extractant acts as a proton donor for the formation of a carbon dioxide dispersant in the presence of sodium carbonate dissolved in the aqueous phase. A possibility of combining the developed method with high-performance liquid chromatography with fluorimetric detection is shown on an example of the determination of fluoroquinolones in wastewaters. The limits of detection (3σ) for ofloxacin, fleroxacin, and norfloxacin were 0.3 µg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Krylov, V.A., Krylov, A.V., Mosyagin, P.V., and Matkivskaya, Yu.O., J. Anal. Chem., 2011, vol. 66, p. 331.

    Article  CAS  Google Scholar 

  2. Dmitrienko, S.G., Apyari, V.V., Tolmacheva, V.V., and Gorbunova, M.V., J. Anal. Chem., 2021, vol. 76, no. 8, p. 907. https://doi.org/10.1134/S1061934821080049

    Article  CAS  Google Scholar 

  3. Dmitrienko, S.G., Apyari, V.V., Tolmacheva, V.V., and Gorbunova, M.V., J. Anal. Chem., 2020, vol. 75, no. 10, p. 1237. https://doi.org/10.1134/S1061934820100056

    Article  CAS  Google Scholar 

  4. Zolotov, Yu.A., Protochnyi khimicheskii analiz (Flow Chemistry Analysis), Moscow: Nauka, 2014.

  5. Tsizin, G.I., Statkus, M.A., and Zolotov, Yu.A., J. Anal. Chem., 2015, vol. 70, no. 11, p. 1289.

    Article  CAS  Google Scholar 

  6. Vakh, C., Falkova, M., Timofeeva, I., Moskvin, A., Moskvin, L., and Bulatov, A., Crit. Rev. Anal. Chem., 2016, vol. 46, p. 374.

    Article  CAS  PubMed  Google Scholar 

  7. Vakh, K.S., Timofeeva, I.I., and Bulatov, A.V., J. Anal. Chem., 2019, vol. 74, no. 11, p. 1127. https://doi.org/10.1134/S106193481911011X

    Article  CAS  Google Scholar 

  8. Smith, E.L., Abbott, A.P., and Ryder, K.S., Chem. Rev., 2014, vol. 114, no. 21, p. 11060. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  9. Shishov, A., Bulatov, A., Locatelli, M., Carradori, S., and Andruch, V., Microchem. J., 2017, vol. 135, p. 33. https://doi.org/10.1016/j.microc.2017.07.015

    Article  CAS  Google Scholar 

  10. Cao, J. and Su, E., J. Cleaner Prod., 2021, vol. 314. https://doi.org/10.1016/j.jclepro.2021.127965

  11. Ma, Y., Wang, Q., and Zhu, T., Anal. Methods, 2019, vol. 11, p. 5901. https://doi.org/10.1039/C9AY02244A

    Article  CAS  Google Scholar 

  12. Turnidge, J., Drugs, 1999, vol. 58, p. 29. https://doi.org/10.2165/00003495-199958002-00006

    Article  CAS  PubMed  Google Scholar 

  13. Martins, M.A.R., Crespo, E.A., Pontes, P.V.A., Silva, L.P., Bulow, M., Maximo, G.J., Batista, E.A.C., Held, C., Pinho, S.P., and Coutinho, J.A.P., ACS Sustainable Chem. Eng., 2018, vol. 6, p. 8836. https://doi.org/10.1021/acssuschemeng.8b01203

    Article  CAS  Google Scholar 

  14. Taverniers, I., De Loose, M., and Van Bockstaele, E., TrAC, Trends Anal. Chem., 2004, vol. 23, p. 535. https://doi.org/10.1016/j.trac.2004.04.001

    Article  CAS  Google Scholar 

  15. Herrera-Herrera, A.V., Hernэфndez-Borges, J., Borges-Miquel, T.M., and Rodríguez-Delgado, M.Á., J. Pharm. Biomed. Anal., 2013, vol. 75, p. 130. https://doi.org/10.1016/j.jpba.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  16. Selahle, S.K. and Nomngongo, P.N., Int. J. Environ. Anal. Chem., 2020, vol. 100, p. 282. https://doi.org/10.1080/03067319.2019.1636042

    Article  CAS  Google Scholar 

  17. Herrera-Herrera, A.V., Hernández-Borges, J., Borges-Miquel, T.M., and Rodríguez-Delgado, M.Á., Electrophoresis, 2010, vol. 31, p. 3457. https://doi.org/10.1002/elps.201000285

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the Russian Science Foundation (nos. 21-13-00020, https://rscf.ru/project/21-13-00020/) for financial support in the ongoing research, as well as to the State Unitary Enterprise “Vodokanal of St. Petersburg” for providing samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Timofeeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeeva, I.I., Barbayanov, K.A. & Bulatov, A.V. Automated Liquid–Liquid Microextraction of Fluoroquinolones for Their Subsequent Chromatographic Determination. J Anal Chem 78, 207–212 (2023). https://doi.org/10.1134/S1061934823020132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823020132

Keywords:

Navigation