Log in

Application of Metal-Organic Frameworks to High-Performance Liquid Chromatography

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We present a critical review of experimental studies of the efficiency of the separation of various groups of chemical compounds under the conditions of high-performance liquid chromatography using metal-organic framework polymers (metal-organic frameworks (MOFs)) or composite materials with MOFs as a stationary phase. MOFs demonstrated many advantages in high-performance liquid chromatography and a possibility of competing successfully with conventional phases, especially in the determination of low-molecular-weight compounds and optical isomers. Among the promising options for using this class of materials are the development of monolithic separation columns and hybrid adsorbents that eliminate the disadvantages of adsorbents based on pure MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Moldoveanu, S. and David, V., Essentials in Modern HPLC Separations, Amsterdam: Elsevier, 2013.

    Google Scholar 

  2. Fanali, S., Poole, C.F., Haddad, P.R., and Riekkola, M.L., Liquid Chromatography: Fundamentals and Instruments, Amsterdam: Elsevier, 2017.

    Google Scholar 

  3. Kromidas, S., The HPLC Expert: Possibilities and Limitations of Modern High Performance Liquid Chromatography, New York: Wiley, 2016.

    Book  Google Scholar 

  4. Handbook of Pharmaceutical Analysis by HPLC, vols. 1–6, New York: Academic, 2005.

  5. Kazakevich, Y.V. and LoBrutto, R., HPLC for Pharmaceutical Scientists, Hoboken: Wiley, 2007.

    Book  Google Scholar 

  6. Maier, V.R., Prakticheskaya vysokoeffektivnaya zhidkostnaya khromatografiya (Practical High Performance Liquid Chromatography), Moscow: Tekhnosfera, 2017.

  7. Cserhati, T. and Valko, K., Chromatographic Determination of Molecular Interactions Applications in Biochemistry, Chemistry, and Biophysics, Boca Raton: CRC, 1993.

    Google Scholar 

  8. Farha, O.K., Eryazici, I., Jeong, N.C., Hauser, B.G., Wilmer, C.E., Sarjeant, A.A., Snurr, R.Q., Nguyen, S.T., Yazaydin, A.Ö., and Hupp, J.T., J. Am. Chem. Soc., 2012, vol. 13, no. 36, p. 15016.

    Article  Google Scholar 

  9. Paz, F.A.A., Klinowski, J., Vilela, S.M.F., Tomé, J.P.C., Cavaleiro, J.A.S., and Rocha, J., Chem. Soc. Rev., 2012, vol. 41, no. 3, p. 1088.

    Article  PubMed  Google Scholar 

  10. Cheetham, A.K., Ferey, G., and Loiseau, T., Angew. Chem., Int. Ed. Engl., 1999, vol. 38, no. 22, p. 3268.

    Article  CAS  PubMed  Google Scholar 

  11. Valtchev, V., Mintova, S., and Tsapatsis, M., Ordered Porous Solids, Amsterdam: Elsevier, 2008.

    Google Scholar 

  12. Furukawa, H., Cordova, K.E., O’Keeffe, M., and Yaghi, O.M., Science, 2013, vol. 341, no. 6149, 1230444.

    Article  PubMed  Google Scholar 

  13. Corella-Ochoa, M.N., Tapia, J.B., Rubin, H.N., Lillo, V., González-Cobos, J., Núñez-Rico, J.L., Balestra, S.R.G., Almora-Barrios, N., Lledós, M., Güell-Bara, A., Cabezas-Giménez, J., Escudero-Adan, E.C., Vidal-Ferran, A., Calero, S., Reynolds, M., Marti-Gastaldo, C., and Galán-Mascarós, J.R., J. Am. Chem. Soc., 2019, vol. 141, no. 36, p. 14306.

    Article  CAS  PubMed  Google Scholar 

  14. Yu, Y., Ren, Y., Shen, W., Deng, H., and Gao, Z., TrAC, Trends Anal. Chem., 2014, vol. 50, p. 33.

    Article  Google Scholar 

  15. Li, H., Wang, K., Sun, Y., Lollar, C.T., Li, J., and Zhou, H.C., Mater. Today, 2019, vol. 21, no. 2, p. 108.

    Article  Google Scholar 

  16. Wang, Z. and Cohen, S.M., Chem. Soc. Rev., 2009, vol. 38, no. 5, p. 1315.

    Article  CAS  PubMed  Google Scholar 

  17. Martens, J.A. and Jacobs, P.A.Ch., in Studies in Surface Science and Catalysis, Bekkum, H., Flanigen, E.M., Jacobs, P.A., and Jansen, J.C., Eds., Introduction to Zeolite Science and Practice, vol. 137, Amsterdam: Elsevier, 2001, p. 633.

  18. Yusuf, K., Aqel, A., and ALOthman, Z., J. Chromatogr. A, 2014, vol. 1348, p. 1.

    Article  CAS  PubMed  Google Scholar 

  19. Hartlieb, K.J., Holcroft, J.M., Moghadam, P.Z., Vermeulen, N.A., and Algaradah, M.M., J. Am. Chem. Soc., 2016, vol. 138, no. 7, p. 2292.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, C.-X., Zheng, Y.-Z., and Yan, X.-P., RSC Adv., 2017, vol. 7, no. 58, p. 36297.

    Article  CAS  Google Scholar 

  21. Ke, D., Feng, J.-F., Wu, D., Hou, J.-B., Zhang, X.-Q., Li, B.-J., and Zhang, S., RSC Adv., 2019, vol. 9, no. 32, p. 18271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alaerts, L., Maes, M., Giebeler, L., Jacobs, P.A., Martens, J.A., Denayer, J.F.M., Kirschhock, C.E., and De Vos, D.E., J. Am. Chem. Soc., 2008, vol. 130, no. 43, p. 14170.

    Article  CAS  PubMed  Google Scholar 

  23. Alaerts, L., Maes, M., Veen, M.A., Jacobs, P.A., and De Vos, D.E., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 16, p. 2903.

    Article  CAS  PubMed  Google Scholar 

  24. Moreira, M.A., Santos, J.C., Ferreira, A.F.P., Loureiro, J.M., and Rodrigues, A.E., Ind. Eng. Chem. Res., 2011, vol. 50, no. 12, p. 7688.

    Article  CAS  Google Scholar 

  25. Yang, C.-X., Liu, S.-S., Wang, H.-F., Wang, S.-W., and Yan, X.-P., Analyst, 2011, vol. 137, no. 1, p. 133.

    Article  PubMed  Google Scholar 

  26. Liu, S.-S., Yang, C.-X., Wang, S.-W., and Yan, X.-P., Analyst, 2012, vol. 137, no. 4, p. 816.

    Article  CAS  PubMed  Google Scholar 

  27. Shu, L., Chen, S., Zhao, W.-W., Bai, Y., Ma, X.-C., Li, X.-X., Li, J.R., and Somsundaran, P., J. Sep. Sci., 2016, vol. 39, no. 16, p. 3163.

    Article  CAS  PubMed  Google Scholar 

  28. Pérez-Cejuela, H.M., Carrasco-Correa, E.J., Shahat, A., Simó-Alfonso, E.F., and Herrero-Martínez, J.M., J. Sep. Sci., 2019, vol. 42, no. 4, p. 834.

    Article  PubMed  Google Scholar 

  29. Kaskel, S., The Chemistry of Metal-Organic Frameworks, New York: Wiley, 2016.

    Google Scholar 

  30. Ahmad, R., Wong-Foy, A.G., and Matzger, A.J., Langmuir, 2009, vol. 25, no. 20, p. 11977.

    Article  CAS  PubMed  Google Scholar 

  31. Centrone, A., Santiso, E.E., and Hatton, T.A., Small, 2011, vol. 22, no. 16, p. 2356.

    Article  Google Scholar 

  32. Ameloot, R., Liekens, A., Alaerts, L., Maes, M., Galarneau, A., Coq, B., Desmet, G., Sels, B.F., Denayer, J.F.M., and De Vos, D.E., Eur. J. Inorg. Chem., 2010, vol. 24, p. 3735.

    Article  Google Scholar 

  33. Ahmed, A., Hodgson, N., Barrow, M., Clowes, R., Robertson, C.M., Steiner, A., McKeown, P., Bradshaw, D., Myers, P., and Zhang, H., J. Mater. Chem. A, 2014, vol. 2, no. 24, p. 9085.

    Article  CAS  Google Scholar 

  34. Ahmed, A., Forster, M., Clowes, R., Bradshaw, D., Myers, P., and Zhang, H., J. Mater. Chem. A, 2013, vol. 1, no. 1, p. 3276.

    Article  CAS  Google Scholar 

  35. Nuzhdin, A.L., Shalygin, A.S., Artiukha, E.A., Chibiryaev, A.M., Bukhtiyarova, G.A., and Martyanov, O.N., RSC Adv., 2016, vol. 6, no. 67, p. 62501.

    Article  CAS  Google Scholar 

  36. Chen, D.-H., Zhuo, C., Wen, Y.-H., Lin, L., Zhang, Y.-X., Hu, S.-M., Fu, R.-B., and Wu, X.-T., Mater. Chem. Front., 2018, vol. 2, no. 8, p. 1508.

    Article  CAS  Google Scholar 

  37. Aghajanloo, M. and Rashidi, A., J. Chem. Eng. Process Technol., 2014, vol. 5, no. 5, 1000203.

    Article  Google Scholar 

  38. Ming, Y., Purewal, J., Yang, J., Xu, C., Soltis, R., Warner, J., Veenstra, M., Gaab, M., Muller, U., and Siegel, D.J., Langmuir, 2015, vol. 31, no. 17, p. 4988.

    Article  CAS  PubMed  Google Scholar 

  39. Jia, Z., Wu, G., Wu, D., Tong, Z., and Ho, W.S., J. Porous. Mater., 2017, vol. 24, no. 6, p. 1655.

    Article  CAS  Google Scholar 

  40. Fu, Y.-Y., Yang, C.-X., and Yan, X.-P., Chemistry, 2013, vol. 19, no. 40, p. 13484.

    Article  CAS  PubMed  Google Scholar 

  41. Qu, Q., Xuan, H., Zhang, K., Chen, X., Ding, Y., Feng, S., and Xu, Q., J. Chromatogr. A, 2017, vol. 1505, p. 63.

    Article  CAS  PubMed  Google Scholar 

  42. Hawes, C.S., Nolvachai, Y., Kulsing, C., Knowles, G.P., Chaffee, A.L., Marriott, P.J., Batten, S.R., and Turner, D.R., Chem. Commun., 2014, vol. 50, no. 28, p. 3735.

    Article  CAS  Google Scholar 

  43. Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., and Margiolaki, I., Science, 2005, vol. 309, no. 5743, p. 2040.

    Article  PubMed  Google Scholar 

  44. Hong, D.-Y., Hwang, Y.K., Serre, C., Ferey, G., and Chang, J.-S., Adv. Funct. Mater., 2009, vol. 19, no. 10, p. 1537.

    Article  CAS  Google Scholar 

  45. Henschel, A., Gedrich, K., Kraehnert, R., and Kaskel, S., RSC Chem. Commun., 2008, vol. 35, p. 4192.

    Article  Google Scholar 

  46. Yang, C.-X. and Yan, X.-P., Anal. Chem., 2011, vol. 83, no. 18, p. 7144.

    Article  CAS  PubMed  Google Scholar 

  47. Fu, Y.-Y., Yang, C.-X., and Yan, X.-P., Langmuir, 2013, vol. 28, no. 17, p. 6794.

    Article  Google Scholar 

  48. Yang, F., Yang, C.-X., and Yan, X.-P., Talanta, 2015, vol. 137, p. 136.

    Article  CAS  PubMed  Google Scholar 

  49. Hailili, R., Wang, L., Qv, J., Yao, R., Zhang, X.-M., and Liu, H., Inorg. Chem., 2015, vol. 54, no. 8, p. 3713.

    Article  CAS  PubMed  Google Scholar 

  50. Fu, Y.-Y., Yang, C.-X., and Yan, X.-P., J. Chromatogr. A, 2013, vol. 1274, p. 137.

    Article  CAS  PubMed  Google Scholar 

  51. Qin, W., Silvestre, M.E., Li, Y., and Franzreb, M., J. Chromatogr. A, 2016, vol. 1432, p. 84.

    Article  CAS  PubMed  Google Scholar 

  52. Yan, Z., Zhang, W., Gao, J., Lin, Y., Li, J., Lin, Z., and Zhang, L., RSC Adv., 2015, vol. 5, no. 50, p. 40094.

    Article  CAS  Google Scholar 

  53. Liu, M., **g, Y., Zhang, L., Zhou, Y., Yan, H., Song, Y., and Qiao, X., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2021, vol. 1163, 122506.

    Article  CAS  Google Scholar 

  54. van der Perre, S., Liekens, A., Bueken, B., De Vos, D.E., Baron, G.V., and Denayer, J.F., J. Chromatogr. A, 2016, vol. 1469, p. 68.

    Article  CAS  PubMed  Google Scholar 

  55. Alaerts, L., Kirschhock, C.E.A., Maes, M., van der Veen, M.A., Finsy, V., Depla, A., Martens, J.A., Baron, G.V., Jacobs, P.A., Denayer, J.F., and De Vos, D.E., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, no. 23, p. 4293.

    Article  CAS  PubMed  Google Scholar 

  56. Maes, M., Vermoortele, F., Alaerts, L., Couck, S., Kirschhock, C.E.A., Denayer, J.F.M., and De Vos, D.E., J. Am. Chem. Soc., 2010, vol. 132, no. 43, p. 15277.

    Article  CAS  PubMed  Google Scholar 

  57. Howarth, A.J., Liu, Y., Li, P., Li, Z., Wang, T.C., Hupp, J.T., and Farha, O.K., Nat. Rev. Mater., 2016, vol. 1, no. 3, p. 1.

    Article  Google Scholar 

  58. Qin, W.W., Silvestre, M.E., and Franzreb, M., Appl. Mech. Mater., 2015, vol. 703, p. 73.

    Article  Google Scholar 

  59. Ding, M., Yang, L., Zeng, J., Yan, X., and Wang, Q., Anal. Chem., 2020, vol. 92, no. 24, p. 15757.

    Article  CAS  PubMed  Google Scholar 

  60. Fu, Y.-Y., Yang, C.-X., and Yan, X.-P., Chem. Commun., 2013, vol. 49, no. 64, p. 7162.

    Article  CAS  Google Scholar 

  61. Zhao, W.-W., Zhang, C.-Y., Yan, Z.-G., Bai, L.-P., Wang, X., Huang, H., Zhou, Y.Y., **e, Y., Li, F.S., and Li, J.R., J. Chromatogr. A, 2013, vol. 1370, p. 121.

    Article  Google Scholar 

  62. Yan, Z., Zheng, J., Chen, J., Tong, P., Lu, M., Lin, Z., and Zhang, L., J. Chromatogr. A, 2014, vol. 1366, p. 45.

    Article  CAS  PubMed  Google Scholar 

  63. Qin, W., Silvestre, M.E., Brenner-Weiss, G., Wang, Z., Schmitt, S., Hubner, J., and Franzreb, M., Sep. Purif. Technol., 2015, vol. 156, p. 249.

    Article  CAS  Google Scholar 

  64. Zhang, X., Han, Q., and Ding, M., RSC Adv., 2014, vol. 5, no. 2, p. 1043.

    Article  Google Scholar 

  65. Peristyy, A., Nesterenko, P.N., Das, A., D’Alessandro, D.M., Hilder, E.F., and Arrua, R.D., Chem. Commun., 2016, vol. 52, no. 30, p. 5301.

    Article  CAS  Google Scholar 

  66. Arrua, R.D., Peristyy, A., Nesterenko, P.N., Das, A., D’Alessandro, D.M., and Hilder, E.F., Analyst, 2017, vol. 142, no. 3, p. 517.

    Article  CAS  PubMed  Google Scholar 

  67. Li, X., Li, B., Liu, M., Zhou, Y., Zhang, L., and Qiao, X., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 10, p. 10320.

    Article  CAS  PubMed  Google Scholar 

  68. Tanaka, K., Muraoka, T., Hirayama, D., and Ohnish, A., Chem. Commun., 2012, vol. 48, no. 68, p. 8577.

    Article  CAS  Google Scholar 

  69. Zhang, M., Zhang, J.-H., Zhang, Y., Wang, B.-J., **e, S.-M., and Yuan, L.-M., J. Chromatogr. A, 2014, vol. 1325, p. 16370.

    Google Scholar 

  70. **e, S., Hu, C., Li, L., Zhang, J., Fu, N., Wang, B., and Yuan, L., Microchem. J., 2018, vol. 139, p. 487.

    Article  CAS  Google Scholar 

  71. Hu, C., Li, L., Yang, N., Zhang, Z., **e, S., and Yuan, L., Acta Chim. Sin., 2016, vol. 74, p. 819.

    Article  CAS  Google Scholar 

  72. Tanaka, K., Kawakita, T., Morawiak, M., and Urbanczyk-Lipkowska, Z., CrystEngComm, 2019, vol. 21, no. 3, p. 487.

    Article  CAS  Google Scholar 

  73. Zhang, M., Pu, Z.-J., Chen, X.-L., Gong, X.-L., Zhu, A.-X., and Yuan, L.-M., Chem. Commun., 2013, vol. 49, no. 45, p. 5201.

    Article  CAS  Google Scholar 

  74. Zhang, M., Xue, X.-D., Zhang, J.-H., **e, S.-M., Zhang, Y., and Yuan, L.-M., Anal. Methods, 2013, vol. 6, no. 2, p. 341.

    Article  Google Scholar 

  75. Zhang, J.-H., Nong, R.-Y., **e, S.-M., Wang, B.-J., Ai, P., and Yuan, L.-M., Electrophoresis, 2017, vol. 38, no. 19, p. 2513.

    Article  CAS  PubMed  Google Scholar 

  76. Kuang, X., Ma, Y., Su, H., Zhang, J., Dong, Y.-B., and Tang, B., Anal. Chem., 2014, vol. 86, no. 2, p. 1277.

    Article  CAS  PubMed  Google Scholar 

  77. Nong, R., Kong, J., Zhang, J., Chen, L., Tang, B., **e, S., and Yuan, L., Chem. J. Chin. Univ., 2016, vol. 37, no. 1, p. 19.

    CAS  Google Scholar 

  78. Yuan, B., Li, L., Yu, Y., Xu, N., Fu, N., Zhang, J., Zhang, M., Wang, B., **e, S., and Yuan, L., Microchem. J., 2021, vol. 161, 105815.

    Article  CAS  Google Scholar 

  79. Jiang, H., Yang, K., Zhao, X., Zhang, W., Liu, Y., Jiang, J., and Cui, Y., J. Am. Chem. Soc., 2021, vol. 143, no. 1390.

  80. Yu, Y., Xu, N., Zhang, J., Wang, B., **e, S., and Yuan, L., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 14, p. 16903.

    Article  CAS  PubMed  Google Scholar 

  81. Wang, X., Zhu, Y., Liu, J., Liu, C., Cao, C., and Song, W., Asian J., 2018, vol. 13, no. 12, p. 1535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Kh. Shaikhutdinov or T. K. Ryazanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikhutdinov, I.K., Ryazanova, T.K., Limareva, L.V. et al. Application of Metal-Organic Frameworks to High-Performance Liquid Chromatography. J Anal Chem 78, 1–17 (2023). https://doi.org/10.1134/S1061934823010100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823010100

Keywords:

Navigation