Log in

Determination of Sulfacetamide in Blood and Urine Using PBS Quantum Dots Sensor and Artificial Neural Networks

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Fluorescent chemical sensors have been proposed to detect drugs by increasing or shutting down the fluorescence emission and absorption. These sensors have been used because they are non-destructive, able to show concentrations, have fast response time and high accuracy. In this research, a chemical sensor based on PbS functionalized with gelatin quantum dots was utilized for sulfacetamide detection. The calibration curve was linear in the range of 0.02 to 10 µg/L. The standard deviation was less than 2.0%, and the method detection limit (3s/m) was 0.022 nM; the response for PbS quantum dot–gelatin nanocomposite sensor was obtained in 50 s at 330 nm at a 95% confidence level. The artificial neural network model was used as a tool for determining the mean square error (MSE of 0.031) for sulfacetamide by PbS quantum dot–gelatin nanocomposite sensor. The observed outcomes confirmed suitable recovery and very low detection limit for sulfacetamide determination. The fluorometric method was applied to quantify sulfacetamide in real samples such as urine and blood and could be used for other drugs and hospital samples. The chemical PbS quantum dot–gelatin nanocomposite sensor is an excellent sensor with good reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Tanreh, S., Shameli, A., and Balali, E., J. Appl. Chem. Res., 2018, vol. 12, no. 1, p. 79.

    Google Scholar 

  2. Darweesh, S.A., Al-Haidari, I.M.A., Mohammed, A.K., and Dikran, S.B., J. Pure Appl. Sci., 2017, vol. 26, no. 3, p. 281.

    Google Scholar 

  3. Hull, C.A. and Johnson, S.M., Crit. Care Med., 2004, vol. 73, no. 6, p. 425.

    Google Scholar 

  4. Yadav, S.K., Choubey, P.K., Agrawal, B., and Goyal, R.N., Talanta, 2014, vol. 118, p. 96.

    Article  CAS  Google Scholar 

  5. Byrom, L., Zappala, T., and Muir, J., Australas. J. Dermatol., 2013, vol. 54, no. 2, p. 144.

    Article  Google Scholar 

  6. Nagaraja, P., Yathirajan, H., sunitha, K., and Vasantha, R., J. AOAC Int., 2002, vol. 85, no. 4, p. 869.

    Article  CAS  Google Scholar 

  7. Baran, W., Sochacka, J., and Wardas, W., Chemosphere, 2006, vol. 65, no. 8, p. 1295.

    Article  CAS  Google Scholar 

  8. El-Ragehy Maha, N., Hegazy, A., Abd El Hamid Samia, G., and Tawfik, S.A., Bull. Fac. Pharm. Cairo Univ., 2018, vol. 56, no. 2, p. 207.

    Google Scholar 

  9. Hajian, R., Fadaeian, M., and Ghanbari, F., Asian J. Chem., 2010, vol. 22, p. 6840.

    CAS  Google Scholar 

  10. Zheng, H. and Wang, P., Se Pu, 2007, vol. 25, no. 2, p. 238.

    CAS  Google Scholar 

  11. El-Ragehy Maha, N., Hegazy, A., Abd El Hamid, G., and Tawfik, S.A., J. Chromatogr. Sci., 2017, vol. 55, no. 10, p. 1000.

    Article  Google Scholar 

  12. Borras, S., Companyo, R., and Guiteras, J., J. Agric. Food Chem., 2011, vol. 59, no. 10, p. 5240.

    Article  CAS  Google Scholar 

  13. Gallego, J.L. and Arroyo, J.P., J. Pharm. Biomed. Anal., 2003, vol. 31, p. 873.

    Article  Google Scholar 

  14. Pargari, M., Marahel, F., and Mombini Godajdar, B., J. Phys. Theor. Chem., 2020, vol. 17, nos. 1–2, p. 1.

    Google Scholar 

  15. Al-Uzri, W.A. and Fadil, G., Asian. J. Chem., 2017, vol. 29, no. 4, p. 782.

    Article  CAS  Google Scholar 

  16. Samadi, N. and Narimani, S., J. Chem. Biol. Phys. Sci., 2016, vol. 6, p. 387.

    CAS  Google Scholar 

  17. Hatamie, A., Marahel, F., and Sharifat, A., Talanta, 2018, vol. 176, p. 518.

    Article  CAS  Google Scholar 

  18. Huang, W.B., Gu, W., Huang, H.X., Wang, J.B., Shen, W.X., Lv, Y.Y., and Shen, J., Dyes Pigm., 2017, vol. 143, p. 427.

    Article  CAS  Google Scholar 

  19. Brahim, N.B., Mohamed, N.B.H., Echabaane, M., Haouari, M., Chaabane, R.B., Negrerie, M., and Ouada, H.B., Sens. Actuators, B, 2015, vol. 220, p. 1346.

    Article  Google Scholar 

  20. Dai, Y., Yao, K., Fu, J., Xue, K., Yang, L., and Xu, K., Sens. Actuators, B, 2017, vol. 251, p. 877.

    Article  CAS  Google Scholar 

  21. Knoblauch, C., Griep, M., and Friedrich, C., Sensors, 2014, vol. 14, p. 19731.

    Article  Google Scholar 

  22. Mirsalari, M. and Elhami, S., Spectrochim. Acta, Part A, 2020, vol. 240, Article 118617.

    Article  CAS  Google Scholar 

  23. Yang, X., Liu, M., Yin, Y., Tang, F., Xu, H., and Liao, X., Sensors, 2018, vol. 18, no. 4, p. 964.

    Article  Google Scholar 

  24. Coester, C., Langer, K., Brisen, H., and Kruter, J., J. Microencapsulation, 2000, vol. 17, p. 187.

    Article  CAS  Google Scholar 

  25. Zypan, J., Acta. Chim. Slov., 1994, vol. 41, no. 3, p. 327.

    Google Scholar 

  26. Marahel, F., Mombeni Goodajdar, B., Niknam, L., Faridnia, M., Pournamdari, E., and Mohammad Doost, S., Int. J. Environ. Anal. Chem., 2021, vol. 101, no. 5. https://doi.org/10.1080/03067319.2021.1901895

  27. Samadi, N. and Narimani, S., Sens. Lett. J., 2016, vol. 14, p. 530.

    Article  Google Scholar 

  28. Zhao, Y., Zou, J., and Shi, W., J. Mater. Sci. Eng., 2005, vol. 121, p. 20.

    Article  Google Scholar 

  29. Shyju, T.S., Anandhi, S., Sivakumar, R., and Gopalakrishnan, R., Int. J. Nanosci., 2014, vol. 13, p. 1450001.

    Article  Google Scholar 

  30. Zohreh, M., Ghoreishi, S.M., Behpour, M., and Mohammadhassan, M., Arab. J. Chem., 2017, vol. 10, p. 657.

    Article  Google Scholar 

  31. Adel, R., Ebrahim, S., Shokry, A., Soliman, M., and Khalil, M., ACS Omega, 2021, vol. 6, p. 2167.

    Article  CAS  Google Scholar 

  32. Al-Nuri, I., Israa, A., and Al-Obaydi, A., J. Raf. Sci., 2009, vol. 20, no. 4, p. 17.

    Google Scholar 

  33. Liang, S.S., Qi, L., Zhang, R.L., **, M., and Zhang, Z.Q., Sens. Actuators, B, 2017, vol. 244, p. 585.

    Article  CAS  Google Scholar 

  34. Dutta, P., Saikia, D., Adhikary, N.C., and Sarma, N.S., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 24778.

    Article  CAS  Google Scholar 

  35. Ahmed, S., Anwar, N., Sheraz, M.A., and Ahmad, I., J. Pharm. BioAllied Sci., 2017, vol. 9, no. 2, p. 126.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge partial support of this work by the Islamic Azad University, Branch of Omidiyeh Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnaz Davoudi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoudi, S., Marahel, F. Determination of Sulfacetamide in Blood and Urine Using PBS Quantum Dots Sensor and Artificial Neural Networks. J Anal Chem 77, 1448–1457 (2022). https://doi.org/10.1134/S1061934822110041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822110041

Keywords:

Navigation