Log in

Potentiometric Sensors Sensitive to Some Cephalosporin Antibiotics: Properties and Applications

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We developed unmodified and modified solid-contact potentiometric sensors (tubular and screen-printed) for determining some cephalosporin antibiotics in aqueous media, biological fluids, and pharmaceutical preparations. Tetraalkylammonium compounds with silver(I)–β-lac [Ag(β-lac)2] complex compounds were used as active membrane components; carbon nanotubes, polyaniline, and copper oxide and NiZnFeO nanoparticles were used as modifiers. The main electroanalytical and operational characteristics of the studied sensors in aqueous solutions of antibiotics and oral fluid were determined. The sensors ensure the determination of antibiotics in a wide analytical range of 1 × 10–4 (1 × 10–5)–1 × 10–2 (0.1) M; the values of cmin = n × 10–5 (1 × 10–6) M. The modifiers stabilize the electrode potential and act as electron transfer mediators, improving the electroanalytical characteristics of the sensors. Solid-contact sensors can be used to determine the main substances in drugs from various manufacturers and model aqueous solutions and oral fluid with added antibiotics and as consistuents of “electronic tongue” multisensor systems for the separate determination of cephalosporin antibiotics in two-component mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yakovlev, V.P., Ratsional’naya antimikrobnaya farmakoterapiya (Rational Antimicrobial Pharmacotherapy), Moscow: Litterra, 2007.

  2. Kulapina, O.I. and Kulapina, E.G., Antibakterial’naya terapiya. Sovremennye metody opredeleniya antibiotikov v biologicheskikh i lekarstvennykh sredakh (Antibacterial Therapy. Modern Methods for the Determination of Antibiotics in Biological and Medicinal Media), Saratov: Saratovskii Istochnik, 2015.

  3. Kulapina, E.G., Snesarev, S.V., Kulapina, O.I., and Barinova, O.V., in Problemy analiticheskoi khimii (Problems of Analytical Chemistry), vol. 16: Farmatsevticheskii analiz (Pharmaceutical Analysis), Moscow: Argamak-Media, 2013, p. 326.

  4. Bereznyakov, I.G., Bolezni Antibiot., 2011, vol. 5, no. 2, p. 95.

    Google Scholar 

  5. Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Fundamentals of the Doctrine of Antibiotics), Moscow: Nauka, 2004.

  6. Bogomolova, N.S., Oreshkina, T.D., and Bol’shakov, L.V., Antibiot. Khimioter. 2003, vol. 48, no. 7, p. 20.

    CAS  PubMed  Google Scholar 

  7. Paul, M., Yahav, D., Fraser, A., and Leibovici, L., J. Antimicrob. Chemother., 2006, vol. 57, p. 89.

    Article  CAS  Google Scholar 

  8. Yahav, D., Paul, M., Fraser, A., Sarid, N., and Leibovici, L., Lancet Infect. Dis., 2007, vol. 7, p. 48.

    Article  Google Scholar 

  9. Khaled, E., Khalil, M.M., Abed el Aziz, G.M., Sens. Actuators, B, 2017, vol. 244, p. 876.

    Article  CAS  Google Scholar 

  10. Yu, J., Tang, W., Wang, F., Zhang, F., Wang, Q., and He, P., Sens. Actuators, B, 2020, vol. 311 A, 127857.

  11. Ismail, F. and Adeloju, S.B., Electroanalysis, 2015, vol. 27, no. 6, p. 1523.

    Article  CAS  Google Scholar 

  12. Abdel-Haleem, F.M., Gamal, E., Rizk, M.S., El Nashar, R.M., Anis, B., Elnabawy, H.M., and Barhoum, A., Mater. Sci. Eng., 2020, vol. 116, 111110.

    Article  CAS  Google Scholar 

  13. Badr, I.H.A., Saleh, G.A., and Sayed, S.M., Int. J. Electrochem. Sci., 2014, vol. 9, p. 1621.

    Google Scholar 

  14. Saleh, G.A., Badr, I.H.A., El-Deen, D.A.M.N., and Derayea, S.M., IEEE Sens. J., 2019, vol. 20, no. 7, p. 3415.

    Article  Google Scholar 

  15. Kulapina, O.I., Makarova, N.M., and Kulapina, E.G., J. Anal. Chem., 2015, vol. 70, no. 4, p. 477.

    Article  CAS  Google Scholar 

  16. Kulapina, E.G., Kulapina, O.I., and Karenko, V.A., Izv. Saratov. Univ., Nov. Ser., Ser. Khim. Biol. Ekol., 2016, vol. 16, no. 2, p. 138.

    Google Scholar 

  17. Li, M., Li, Y.T., Li, D.W., and Long, Y.T., Anal. Chim. Acta, 2012, vol. 734, p. 31.

    Article  CAS  PubMed  Google Scholar 

  18. Alonso-Lomillo, M.A., Domínguez-Renedo, O., and Arcos-Martínez, M.J., Talanta, 2010, vol. 82, no. 5, p. 1629.

    Article  CAS  PubMed  Google Scholar 

  19. Shetti, N.P., Nayak, D.S., Malode, S.J., and Kulkarni, R.M., Sens. Actuators, B, 2017, vol. 247, p. 858.

    Article  CAS  Google Scholar 

  20. Amani-Beni, Z. and Nezamzadeh-Ejhieh, A., Anal. Chim. Acta, 2018, vol. 1031, no. 4, p. 47.

    Article  CAS  PubMed  Google Scholar 

  21. Lomae, A., Nantaphol, S., Kondod, T., Chailapakul, O., Siangproh, W., and Panchompoo, J., J. Electroanal. Chem., 2019, vol. 840, p. 439.

    Article  CAS  Google Scholar 

  22. Kenarkob, M. and Pourghobadi, Z., Microchem. J., 2019, vol. 146, p. 1019.

    Article  CAS  Google Scholar 

  23. Chang, Y.H., Woi, P.M., and Alias, Y., Microchem. J., 2019, vol. 148, p. 322.

    Article  CAS  Google Scholar 

  24. Afzali, M., Jahromi, Z., and Nekooie, R., Microchem. J., 2019, vol. 145, p. 373.

    Article  CAS  Google Scholar 

  25. Hadi, M. and Honarmand, E., Russ. J. Electrochem., 2017, vol. 53, no. 4, p. 380.

    Article  CAS  Google Scholar 

  26. Eremenko, A.V., Prokopkina, T.A., Kasatkin, V.E., Osipova, T.A., and Kurochkin, I.N., Moscow Univ. Chem Bull. (Engl. Transl.), 2014, vol. 69, no. 3, p. 131.

  27. Frag, E.Y. and Mohamed, S.H., Int. J. Electrochem. Sci., 2019, vol. 14, no. 7, p. 6603.

    Article  CAS  Google Scholar 

  28. Ali, T.A., Mohamed, G.G., and Yahya, G.A., Iran. J. Pharm. Res., 2017, vol. 16, no. 2, p. 498.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kulapina, E.G., Tyutlikova, M.S., Kulapina, O.I., and Dubasova, A.E., J. Anal. Chem., 2019, vol. 74, p. 52.

    Article  CAS  Google Scholar 

  30. Kulapina, E.G., Dubasova, A.E., and Kulapina, O.I., Zavod. Lab., Diagn. Mater., 2019, vol. 85, no. 9, p. 4.

    Google Scholar 

  31. Kulapina, E.G., Kulapina, O.I., and Ankina, V.D., J. Anal. Chem., 2020, vol. 75, no. 2, p. 231.

    Article  CAS  Google Scholar 

  32. Ayad, M.F., Trabik, Y.A., Abdelrahman, M.H., Fares, N.V., and Magdy, N., Chemosensors, 2021, vol. 9, no. 8, p. 1.

    Google Scholar 

  33. Legin, A.V., Rudnitskaya, A.M., and Vlasov, Yu.G., in Problemy analiticheskoi khimii (Problems of Analytical Chemistry), vol. 14: Khimicheskie sensory (Chemical Sensors), Vlasov, Yu.G., Ed., Moscow; Nauka, 2011, p. 79.

  34. Kulapina, E.G. and Makarova, N.M., Mul’tisensornye sistemy v analize zhidkikh i gazovykh ob”ektov (Multisensor Systems in the Analysis of Liquid and Gas Objects), Saratov: Nauka, 2010.

  35. Wesoly, M. and Ciosek-Skibinska, P., Sens. Actuators, B, 2018, vol. 267, p. 570.

    Article  CAS  Google Scholar 

  36. Saidi, T., Moufi, M., Zaim, O., Bari, N.E., and Bouchikhi, B., Measurement, 2018, vol. 115, p. 178.

    Article  Google Scholar 

  37. Wesoly, M., Cal, K., Ciosek, P., and Wroblewski, W., Talanta, 2017, vol. 162, p. 203.

    Article  CAS  PubMed  Google Scholar 

  38. Wesoly, M., Zabadaj, M., Amelian, A., Winnicka, K., Wroblewski, W., and Ciosek, P., Sens. Actuators, B, 2017, vol. 238, p. 1190.

    Article  CAS  Google Scholar 

  39. Lenik, J., Wesoly, M., Ciosek, P., and Wroblewski, W., J. Electroanal. Chem., 2016, vol. 780, p. 153.

    Article  CAS  Google Scholar 

  40. Wei, Zh. and Wang, J., Anal. Chim. Acta, 2011, vol. 694, p. 46.

    Article  CAS  PubMed  Google Scholar 

  41. Zil’berg, R.A., Sidel’nikov, A.V., Yarkaeva, Yu.A., Kabirova, L.R., and Maistrenko, V.N., Vestn. Bashkir. Univ., 2017, vol. 22, no. 2, p. 356.

    Google Scholar 

  42. Zil’berg, R.A., Yarkaeva, Yu.A., Maksyutova, E.I., Sidel’nikov, A.V., and Maistrenko, V.N., J. Anal. Chem., 2017, vol. 72, no. 4, p. 402.

    Article  Google Scholar 

  43. Safronova, E., Parshina, A.V., Yelnikova, A., Bobreshova, O.V., Pourcelly, G., and Yaroslavtsev, A., J. Electroanal. Chem., 2020, vol. 873, no. 15, 114435.

    Article  CAS  Google Scholar 

  44. Salama, F.M., Attia, K.A.M., El-Olemy, A., and Mohamad, A., Glob. Drugs Ther., 2018, vol. 3, no. 3, p. 1.

    Google Scholar 

  45. Kulapina, E.G., Snesarev, S.V., Makarova, N.M., and Pogorelova, E.S., J. Anal. Chem., 2011, vol. 66, no. 1, p. 78.

    Article  CAS  Google Scholar 

  46. Kulapina, E.G., Dubasova, A.E., Kulapina, O.I., and Ankina, V.D., Izv. Saratov. Univ., Nov. Ser., Ser. Khim. Biol. Ekol., 2021, vol. 21, no. 1, p. 4.

    Google Scholar 

  47. Vavilova, T.P., Yanushevich, O.O., Ostrovskaya, I.G., and Slyuna., Analiticheskie vozmozhnosti i perspektivy (Analytical Capabilities and Perspectives), Moscow: BINOM, 2014.

  48. Savinov, S.S. and Anisimov, A.A., J. Anal. Chem., 2020, vol. 75, no. 4, p. 453.

    Article  CAS  Google Scholar 

  49. Zhirkov, A.A., Yagov, V.V., Antonenko, A.A., Korotkov, A.S., and Zuev, B.K., J. Anal. Chem., 2020, vol. 75, no. 1, p. 63.

    Article  CAS  Google Scholar 

  50. Alekseev, V.G., Bioneorganicheskaya khimiya penitsillinov i tsefalosporinov (Bioinorganic Chemistry of Penicillins and Cephalosporins), Tver: Tver. Gos. Univ., 2009.

  51. Buck, R. and Lindner, E., Pure Appl. Chem., 1994, vol. 66, no. 12, p. 2527.

    Article  CAS  Google Scholar 

  52. Umezawa, Y., Buhlmann, P., Umazawa, K., Tohda, K., and Amemiya, S., Pure Appl. Chem., 2000, vol. 72, no. 10, p. 1851.

    Article  CAS  Google Scholar 

  53. Belyustin, A.A., Potentsiometriya: fiziko-khimicheskie osnovy i primeneniya (Potentiometry: Physico-Chemical Foundations and Applications), St. Petersburg: Lan’, 2015.

  54. Rebrova, O.Yu., Statisticheskii analiz meditsinskikh dannykh. Primenenie paketa prikladnykh programm Statistica (Statistical Analysis of Medical Data: Application of the Statistics Software Package), Moscow: Media Sfera, 2002.

  55. Gaidyshev, I., Analiz i obrabotka dannykh. Spetsial’nyi spravochnik (Data Analysis and Processing: A Reference Book), St. Petersburg, 2011.

  56. Kulapina, O.I. and Mikhailova, M.S., Antibiot. Khimioter. 2014, vol. 59, nos. 9–10, p. 29.

    CAS  PubMed  Google Scholar 

  57. Mashkovskii, M.D., Lekarstvennye sredstva (Medicines), Moscow: Novaya Volna, 2014.

  58. Alekseev, V.G. and Demskaya, L.B., Russ. J. Coord. Chem., 2007, vol. 33, no. 3, p. 203.

    Article  CAS  Google Scholar 

  59. Kulapina, E.G. and Snesarev, S.V., J. Anal. Chem., 2012, vol. 67, no. 2, p. 163.

    Article  CAS  Google Scholar 

  60. Budnikov, G.K., Evtyugin, G.A., and Maistrenko, V.N., Modifitsirovannye elektrody dlya vol’tamperometrii v khimii, biologii, meditsine (Modified Electrodes for Voltammetry in Chemistry, Biology, and Medicine) Moscow: Binom, 2009.

  61. Vlasov, Yu., Legin, A., and Rudnitskaya, A., Sens. Actuators, B, 1997, vol. 44, nos. 1–3, p. 532.

    Article  CAS  Google Scholar 

  62. Vlasov, Yu., Legin, A., and Rudnitskaya, A., J. Anal. Chem., 1997, vol. 52, no. 8, p. 758.

    CAS  Google Scholar 

  63. Kulapina, E.G., Dubasova, A.E., Kulapina, O.I., and Ankina, V.D., Zavod. Lab., Diagn. Mater., 2021, vol. 87, no. 5, p. 5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kulapina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulapina, E.G., Kulapina, O.I., Cherdakova, E.N. et al. Potentiometric Sensors Sensitive to Some Cephalosporin Antibiotics: Properties and Applications. J Anal Chem 77, 963–973 (2022). https://doi.org/10.1134/S1061934822080056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822080056

Keywords:

Navigation