Log in

A Piezoelectric Immunosensor Based on Magnetic Carbon Nanocomposites for the Determination of Ciprofloxacin

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A piezoelectric immunosensor with a recognition layer based on magnetic carbon nanocomposites is developed for the determination of ciprofloxacin. The receptor coating of the sensor is formed by the action of a magnetic field on magnetic particles located on the surface of carbon nanotubes modified with a ciprofloxacin conjugate. The sizes of magnetic particles in the composition of the nanocomposite are determined by scanning electron microscopy. A dependence of the mass of the recognition coating on the size of magnetic particles on the surface of carbon nanotubes is shown. A detection cell with a sensor located above a neodymium magnet is proposed. The analytical characteristics of the immunosensor are determined, the limit of detection for ciprofloxacin is 2 ng/mL, and the linear range of determined concentrations is 5–400 ng/mL. The use of magnetic carbon nanocomposites in the creation of a recognition layer ensures the reduction of the time of sensor preparation to analysis from 24 to 1.5 h and extends its service life. The sensor is tested in the detection of antibiotics in milk and meat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Skládal, P., TrAC, Trends Anal. Chem., 2016, vol. 79, no. 5, p. 127.

    Article  Google Scholar 

  2. Ermolaeva, T.N., Kalmykova, E.N., and Shashkanova, O.Yu., Russ. J. Gen. Chem., 2008, vol. 78, no. 12, p. 2430.

    Article  CAS  Google Scholar 

  3. Chauhan, R., Singh, J., Solanki, P.R., Basu, T., O’Kennedy, R., and Malhotrae, B.D., Biochem. Eng. J., 2015, vol. 103, no. 15, p. 103.

    Article  CAS  Google Scholar 

  4. Vaughan, R.D. and Guilbault, G.G., Piezoelectric Sensor. Piezoelectric Immunosensor, Springer Series in Chemical Sensors and Biosensors, 2007, vol. 5, p. 237.

    Article  CAS  Google Scholar 

  5. Ermolaeva, T.N. and Kalmykova, E.N., Russ. Chem. Rev., 2006, vol. 75, no. 5, p. 397.

    Article  CAS  Google Scholar 

  6. Yanga, N., Chena, X., Renb, T., Zhanga, P., and Yang, D., Sens. Actuators, B, 2015, vol. 207, p. 690.

    Article  Google Scholar 

  7. Jithesh, V.V. and Kaiming, Y., Biotechnol. Prog., 2007, vol. 23, p. 517.

    Google Scholar 

  8. Fama, D.W.H., Palaniappana, Al., Toka, A.I.Y., Liedberga, B., and Moochhalaa, S.M., Sens. Actuators, B, 2011, vol. 157, p. 1.

    Article  Google Scholar 

  9. Wang, J. and Lin, Y., TrAC, Trends Anal. Chem., 2008, vol. 27, no. 7, p. 619.

    Article  Google Scholar 

  10. Le, J. and Ju, H., Adv. Rev., 2010, vol. 2, p. 496.

    Google Scholar 

  11. Hampitak, P., Jowitt, T.A., Melendrez, D., Fresquet, M., Hamilton, P., Iliut, M., Nie, K., Spencer, B., Lennon, R., and Vijayaraghavan, A., ACS Sens., 2020, vol. 5, no. 11, p. 3520.

    Article  CAS  Google Scholar 

  12. Sassolas, A., Prieto-Simon, B., and Marty, J.-L., Am. J. Anal. Chem., 2012, vol. 3, p. 210.

    Article  CAS  Google Scholar 

  13. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., Maksimov, A.A., Konovalova, O.A., and Budnikov, H.C., J. Anal. Chem., 2017, vol. 72, no. 4, p. 362.

    Article  CAS  Google Scholar 

  14. Zhou, J., Gan, N., Li, T., Zhou, H., Li, X., Cao, Y., Wang, L., Sang, W., and Hu, F., Sens. Actuators, B, 2013, vol. 178, p. 494.

    Article  CAS  Google Scholar 

  15. Zhou, L., Cai, P., Feng, Y., Cheng, J., **ang, H., Liu, J., Wu, D., and Zhou, X., Anal. Chim. Acta, 2012, vol. 735, p. 96.

    Article  CAS  Google Scholar 

  16. Xu, Q., Wei, X., and Hao, Z., J. Agric. Food Chem., 2013, vol. 61, p. 1435.

    Article  Google Scholar 

  17. Gao, L. and Chen, L., Microchim. Acta, 2013, vol. 180, p. 423.

    Article  CAS  Google Scholar 

  18. Zarei, H., Ghourchian, H., Eskandari, K., and Zeinali, M., Anal. Biochem., 2012, vol. 421, p. 446.

    Article  CAS  Google Scholar 

  19. Sánchez-Tirado, E., González-Cortés, A., Yáñez-Sedeño, P., and **arrón, J.M., Biosens. Bioelectron., 2018, vol. 113, p. 88.

    Article  Google Scholar 

  20. Zhang, Y., Wang, H., Yan, B., Zhang, Y., Li, J., Shen, G., and Yu, R., J. Immunol. Methods, 2008, vol. 332, p. 103.

    Article  CAS  Google Scholar 

  21. Zhou, J., Gan, N., Li, T., Zhou, H., Li, X., Cao, Y., Wang, L., Sang, W., and Hu, F., Sens. Actuators, B, 2013, vol. 178, p. 494.

    Article  CAS  Google Scholar 

  22. Shanin, I.A., Thuy, N.T.D., and Eremin, S.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2014, vol. 69, p. 136.

  23. Grazhulene, S.S., Zolotareva, N.I., Red’kin, A.N., Shilkina, N.N., Mitina, A.A., and Khodos, I.I., Russ. J. Appl. Chem., 2020, vol. 93, no. 1, p. 57.

    Article  CAS  Google Scholar 

  24. Sauerbrey, G., Z. Phys., 1959, vol. 55, p. 206.

    Article  Google Scholar 

  25. Grazhulene, S.S., Zolotareva, N.I., Red’kin, A.N., Shilkina, N.N., Mitina, A.A., and Kolesnikova, A.M., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, p. 1849.

    Article  CAS  Google Scholar 

  26. Yu, F., Chen, J., Chen, L., Huai, J., Gong, W., Yuan, Z., Wang, J., and Ma, J., J. Colloid Interface Sci., 2012, vol. 378, p. 175.

    Article  CAS  Google Scholar 

  27. Netto, C.G.C.M., Toma, H.E., and Andrade, L.H., J. Mol. Catal. B: Enzym., 2013, vol. 85, p. 71.

    Article  Google Scholar 

  28. Verges, A., Costo, R., Roca, G., Marco, J., Goya, G., Serna, C., and Morales, M., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 1.

    Google Scholar 

  29. Resolution of the Board of the Eurasian Economic Commision no. 28 on February 13, 2018, On the maximum permissible levels of residues of veterinary medicinal products (pharmacologically active substances) that may be contained in unprocessed food products of animal origin, including raw materials, and methods for their determination. https://docs.cntd.ru/document/556522984. Accessed June 20, 2021.

  30. Shukshina, E.I., Farafonova, O.V., Shanin, I.A., Grazhulene, S.S., Eremin, S.A., and Ermolaeva, T.N., Sorbtsionnye Khromatogr. Protsessy, 2018, vol. 18, no. 3, p. 394. refs 14 and 21

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and the Lipetsk Region, project no. 20-43-480001. At the Institute for Problems of Microelectronics Technology and High-Purity Materials of the Russian Academy of Sciences, the work was carried out within the framework of State Assignment no. 075-00355-21-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Farafonova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizina, E.V., Farafonova, O.V., Zolotareva, N.I. et al. A Piezoelectric Immunosensor Based on Magnetic Carbon Nanocomposites for the Determination of Ciprofloxacin. J Anal Chem 77, 458–465 (2022). https://doi.org/10.1134/S1061934822040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822040049

Keywords:

Navigation