Log in

Identification of Cationic and Anionic Surfactants by Chromatography–Mass-Spectrometry in the Microextraction–Fluorimetry Screening of Water and Food Products

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A method is proposed for the identification of surfactants by ultra-performance liquid chromatography (UPLC) with high-resolution mass spectrometry detection after screening water and food samples for the total concentration of cationic and anionic surfactants by microextraction–fluorimetry. The method is based on the use of dispersive liquid–liquid microextraction with chloroform of surfactant ion pairs with organic reagents (eosin and acridine yellow), measuring the fluorescence of the obtained adducts using a smartphone, obtaining RGB colorimetric characteristics, and determining the total surfactant concentration. The main analytical characteristics of the identification of cationic surfactants (alkylpyrdinium, alkyltrimethylammonium, alkyldimethylbenzylammonium (benzalkonium), alkylmethylethylbenzylammonium, didecyldimethylammonium, benzyldimethyl[3-(myristoylamino)propyl]ammonium, N,N-bis(3-aminopropyl)dodecylamine chlorides) and anionic surfactants (alkyl benzene sulfonates (sulfonol), alkyl sulfates, laureth sulfates, alkyl sulfonates, and sodium alkyl carboxylates) by chromatography–mass spectrometry under the selected conditions of chromatographic separation and mass spectrometric detection are found. The features of the chromatographic behavior of the surfactant polymerhomologs under the conditions of UPLC and gradient elution are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Amelin, V.G., Shaoka, Z.A.Ch., and Bol’shakov, D.S., Zh. Anal. Khim., 2021, vol. 76, no. 3, p. 234.

  2. Bassarab, P., Williams, D., Dean, J.R., Ludkin, E., and Perry, J.J., J. Chromatogr. A, 2011, vol. 1218, p. 673.

    Article  CAS  Google Scholar 

  3. Van de Voorde, A., Lorgeoux, C., Gromaire, M.C., and Chebbo, G., J. Environ. Pollut., 2012, vol. 164, p. 150.

    Article  CAS  Google Scholar 

  4. Ruan, T., Song, S., Wang, T., Liu, R., Lin, Y., and Jiang, G., J. Environ. Sci. Technol., 2014, vol. 48, p. 4289.

    Article  CAS  Google Scholar 

  5. Arrebola-Liébanas, F.J., Herrera Abdo, M.A., Fernandez Moreno, J.L., Martínez-Vidal, J.L., and Garrido Frenich, A., J. AOAC Int., 2014, vol. 97, p. 1021.

    Article  Google Scholar 

  6. **an, Y., Dong, H., Wu, Y., Guo, X., Hou, X., and Wang, B., J. Food Chem., 2016, vol. 212, p. 96.

    Article  CAS  Google Scholar 

  7. Slimani, K., Feret, A., Pirotais, Y., Maris, P., Abjean, J.P., and Hurtaud-Pessel, D., J. Chromatogr. A, 2017, vol. 1517, p. 86.

    Article  CAS  Google Scholar 

  8. León, V.M., González-Mazo, E., and Gómez-Parra, A., Handling of marine and estuarine samples for the determination of linear alkylbenzene sulfonates and sulfophenylcarboxylic acids, J. Chromatogr. A, 2000, vol. 889, p. 211.

    Article  Google Scholar 

  9. Wangkarn, S., Soisungnoen, P., Rayanakorn, M., and Grudpan, K., Talanta, 2005, vol. 67, p. 686.

    Article  CAS  Google Scholar 

  10. Hirayama, Y., Ikegami, H., Machida, M., and Tatsumoto, H., J. Health Sci., 2006, vol. 52, p. 228.

    Article  CAS  Google Scholar 

  11. Moldovan, Z., Avram, V., Marincas, O., Petrov, P., and Ternes, T., J. Chromatogr. A, 2011, vol. 1218, p. 343.

    Article  CAS  Google Scholar 

  12. Martín, J., Camacho-Muñoz, D., Santos, J.L., Aparicio, I., and Alonso, E., Anal. Chim. Acta, 2013, vol. 773, p. 60.

    Article  Google Scholar 

  13. Jiménez, J.R. and Luque de Castro, M.D., Electrophoresis, 2008, vol. 29, p. 590.

    Article  Google Scholar 

  14. GOST (State Standard) 31857-2012: Drinking Water. Methods for the Determination of the Surfactants Content, Moscow: Standartinform, 2014.

  15. PND F (Federative Environmental Regulatory Document) 16.1:2:2.2:3.66-10: Quantitative Chemical Analysis of Soils. Methods for Measuring the Mass Fraction of Anionic Surfactants in Samples of Soils, Grounds, Bottom Sediments, Silts, Production and Consumption Wastes by the Extraction-Photometric Method, Moscow, 2010.

  16. RD (Regulatory Document) 52.24.439-2007: Mass Concentration of Nonionic Synthetic Surfactants and Polyethylene Glycols in Waters. Measurement Technique by the Extraction-Photometric Method, Rostov-on-Don: Rosgidromet, 2007.

  17. PND F (Federative Environmental Regulatory Document) 14.1:2:4.15-95: Quantitative Chemical Analysis of Waters. Methods for Measuring the Mass Concentration of Anionic Surfactants in Drinking, Surface and Waste Waters by the Extraction-Photometric Method, Moscow, 2011.

  18. PND F (Federative Environmental Regulatory Document) 14.1:2.16-95: Quantitative Chemical Analysis of Waters. Methods for Measuring the Mass Concentration of Cationic Surfactants in Samples of Natural and Purified Wastewater by the Extraction-Photometric Method, Moscow, 2004.

  19. PND F (Federative Environmental Regulatory Document) 14.1:2.247-07: Quantitative Chemical Analysis of Waters. Methods for Measuring Mass Concentrations of Nonionic Synthetic Surfactants in Natural and Waste Water Samples by the Nephelometric Method, Moscow, 2016.

  20. PND F (Federative Environmental Regulatory Document) 14.1:2:4.194-2003: Quantitative Chemical Analysis of Waters. Methods for Measuring the Mass Concentration of Nonionic Surfactants in Samples of Drinking, Natural and Waste Water by the Extraction-Photometric Method in the Presence of Anionic Surfactants, Moscow, 2012.

  21. Monogarova, O.V., Oskolok, K.V., and Apyari, V.V., J. Anal. Chem., 2018, vol. 73, no. 11, p. 1076.

    Article  CAS  Google Scholar 

  22. Apyari, V.V., Gorbunova, M.V., Isachenko, A.I., Dmitrienko, S.G., and Zolotov, Yu.A., J. Anal. Chem., 2017, vol. 72, no. 11, p. 1127.

    Article  CAS  Google Scholar 

  23. Ivanov, V.M. and Kuznetsova, O.V., Russ. Chem. Rev., 2001, vol. 70, no. 5, p. 357.

    Article  CAS  Google Scholar 

  24. Amelin, V.G. and Bol’shakov, D.S., J. Anal. Chem., 2019, vol. 74, no. 1 (suppl.), p. 39.

    Article  CAS  Google Scholar 

  25. Amelin, V.G. and Bol’shakov, D.S., J. Anal. Chem., 2019, vol. 74, no. 2 (suppl.), p. S24.

    Article  CAS  Google Scholar 

  26. Amelin, V.G. and Bol’shakov, D.S., Moscow Univ. Chem. Bull. (Engl. Transl.), 2020, vol. 75, no. 6, p. 333.

  27. Amelin, V.G., Bol’shakov, D.S., and Podkolzin, I.V., J. Anal. Chem., 2020, vol. 75, no. 9, p. 1177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Amelin.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amelin, V.G., Shogah, Z.A. & Bol’shakov, D.S. Identification of Cationic and Anionic Surfactants by Chromatography–Mass-Spectrometry in the Microextraction–Fluorimetry Screening of Water and Food Products. J Anal Chem 76, 592–602 (2021). https://doi.org/10.1134/S106193482105004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482105004X

Keywords:

Navigation