Log in

Determination of Methocarbamol in Human Urine Using Dispersive Liquid–Liquid Microextraction Based on Solidification of Organic Drop and Response Surface Methodology for Optimization

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A rapid and simple dispersive liquid−liquid microextraction method based on solidification of organic drop with high performance liquid chromatography-ultraviolet detection has been developed for the extraction and quantification of methocarbamol from human urine samples. The effect of extraction and disperser solvents (type and volume), sample solution pH, extraction time and salt effect was investigated. 1-Dodecanol and methanol were selected as extractive and disperser solvents, respectively. Placket-Burman experimental design and response surface methodology have been used for the method optimization. The linear dynamic range of 50–800 µg/L with a correlation coefficient of 0.9988 and a detection limit of 15 µg/L were achieved for the determination of methocarbamol under optimum conditions. The relative standard deviation was less than 3.2% (n = 6). After optimization, the method was successfully applied for the determination of methocarbamol in human urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bruce, R.B., Turnbull, L.B., and Newman, J.H., J. Pharm. Sci., 1971, vol. 60, no. 1, p. 104.

    Article  CAS  Google Scholar 

  2. Truitteb, J.R. and Little, J.M., J. Pharmacol. Exp. Ther.,1958, vol. 122, no. 2, p. 239.

    Google Scholar 

  3. Ma, J., Lu, W., and Chen, L., Curr. Anal. Chem., 2012, vol. 8, p. 78.

    Article  Google Scholar 

  4. Viñas, P., Campillo, N., López-García, I., and Hernández-Córdoba, M., Anal. Bioanal. Chem., 2014, vol. 406, p. 2067.

    Article  Google Scholar 

  5. Mansour, F.R. and Danielson, N.D., Talanta, 2017, vol. 170, no. 1, p. 22.

    Article  CAS  Google Scholar 

  6. Campillo, N., Viñas, P., Šandrejová, J., and Andruch, V., Appl. Spectrosc. Rev., 2017, vol. 52, no. 4, p. 267.

    Article  Google Scholar 

  7. Zang, X., Wu, Q., Zhang, M., **, G., and Wang, Z., Chin. J. Anal. Chem., 2009, vol. 37, p. 161.

    Article  CAS  Google Scholar 

  8. Hashemi, P., Beyranvand, S., Mansur, R.S., and Ghiasvand, A.R., Anal. Chim. Acta, 2009, vol. 655, nos. 1–2, p. 60.

    Article  CAS  Google Scholar 

  9. You, X., Wang, S., Liu, F., and Shi, K., J. Chromatogr. A, 2013, vol. 1300, p. 64.

    Article  CAS  Google Scholar 

  10. Leong, M.I. and Huang, S.D., J. Chromatogr. A, 2009, vol. 1216, p. 45.

    Article  Google Scholar 

  11. Wu, J.W., Chen, H.C., and Ding, W.H., J. Chromatogr. A, 2013, vol. 1302, p. 20.

    Article  CAS  Google Scholar 

  12. Alves, A., Vanermen, G., Covaci, A., and Voorspoels, S., Anal. Bioanal. Chem., 2016, vol. 408, p. 6169.

    Article  CAS  Google Scholar 

  13. Lin, Z., Li, J., Zhang, X., Qiu, M., Huang, Z., and Rao, Y., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2017, vol. 1046, p. 177.

    Article  CAS  Google Scholar 

  14. Vichapong, J., Burakham, R., and Srijaranai, S., Talanta, 2013, vol. 117, p. 221.

    Article  CAS  Google Scholar 

  15. Kocúrová, L., Balogh, I.S., Šandrejová, J., and Andruch, V., Microchem. J., 2012, vol. 102, p. 11.

    Article  Google Scholar 

  16. Trujillo-Rodríguez, M.J., Rocío-Bautista, P., Pino, V., and Afonso, A.M., TrAC, Trends Anal. Chem., 2013, vol. 51, p. 87.

    Article  Google Scholar 

  17. Liu, H., Zhang, M., Wang, X., Zou, Y., Wang, W., Ma, M., and Li, Y., and Wang, H, Microchim. Acta, 2012, vol. 176, nos. 3–4, p. 303.

    Article  CAS  Google Scholar 

  18. Wang, R., Qi, X., Zhao, L., Liu, S., Gao, S., Ma, X., and Deng, Y., J. Sep. Sci., 2016, vol. 13, p. 2444.

    Article  Google Scholar 

  19. Bolzan, C.M., Caldas, S.S., Guimarães, B.S., and Primel, E.G., J. Sep. Sci., 2016, vol. 39 n.

  20. Sena, L.C. and Matos, H.R., Silveira Dórea, H., Pimentel, M.F., Almeida D.C., de Santana, S., and Malagueño de Santana, F.J., Toxicology, 2017, vol. 376, p. 102.

    Article  CAS  Google Scholar 

  21. Citak, D. and Tuzen, M., Turk. J. Chem., 2016, vol. 40, p. 1012.

    Article  CAS  Google Scholar 

  22. Timofeeva, I., Kanashina, D., Stepanova, K., and Bulatov, A., J. Chromatogr. A, 2019, vol. 1588, p. 1.

    Article  CAS  Google Scholar 

  23. Ghambarian, M., Yamini, Y., and Esrafili, A., Microchim. Acta, 2013, vol. 180, p. 519.

    Article  CAS  Google Scholar 

  24. Plackett, R.L. and Burman, J.P., Biometrika, 1946, vol. 33, p. 305.

    Article  Google Scholar 

  25. Wang, J.C. and Jeff Wu, Stat. Sin., 1995, vol. 5, p. 235.

    Google Scholar 

  26. Pourhossein, A. and Alizadeh, K., J. Iran. Chem. Soc., 2018, vol. 15, no. 2, p. 303.

    Article  CAS  Google Scholar 

  27. Pouli, N., Antoniadou-Vyzas, A., and Foscolos, G.B., J. Pharm. Sci., 1994, vol. 83, no. 4, p. 499.

    Article  CAS  Google Scholar 

  28. Alizadeh, K., Nemati, H., Zohrevand, S., Hashemi, P., Kakanejadifard, A., Shamsipur, M., Ganjali, M.R., and Faridbod, F., Mater. Sci. Eng., C, 2013, vol. 33, p. 916.

    Article  CAS  Google Scholar 

  29. Myers, R.H. and Montgomery, D.C., Response Surface Methodology, New York: Wiley, 2002.

    Google Scholar 

  30. Hinkelmann, K. and Kempthorne, O., Design and Analysis of Experiments, vol. 1: Introduction to Experimental Design, New York: Wiley, 2007, 2nd ed.

    Google Scholar 

  31. Koupai-Abyazani, M.R., Esaw, B., and Taviolette, B., J. Anal. Toxicol., 1997, vol. 21, p. 301.

    Article  CAS  Google Scholar 

  32. Zha, W. and Zhu, Z., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2010, vol. 878, nos. 9–10, p. 831.

    Article  CAS  Google Scholar 

  33. Saraji, M. and Khayamian, T., and Hashemian. Z., J. Sep. Sci., 2014, vol. 37, no. 23, p. 3518.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Alizadeh.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alireza Pourhossein, Kamal Alizadeh Determination of Methocarbamol in Human Urine Using Dispersive Liquid–Liquid Microextraction Based on Solidification of Organic Drop and Response Surface Methodology for Optimization. J Anal Chem 76, 64–72 (2021). https://doi.org/10.1134/S106193482101010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482101010X

Keywords:

Navigation