Log in

Syringe Pump Created using 3D Printing Technology and Arduino Platform

  • ANALYTICAL INSTRUMENTS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

An open-source syringe pump has been developed for use in the analytical laboratory. Most pump parts are made on a 3D printer. Other parts (lead screw, guide rods, stepper motor, bearings, electronic components) are purchased in specialized stores. The control panel is based on the Arduino UNO. Device interaction, any settings changes, and operating mode selection are carried out using the LCD Keypad Shield (no computer connection required). The program for the microcontroller is written in Arduino IDE. Assembling the syringe pump takes several hours and requires almost no soldering. Universal clamp allows installing any syringe with a diameter of 6 to 25 mm. The syringe pump can both infuse the liquid and refill the empty syringe. To evaluate the analytical characteristics, a 10-mL glass syringe (Kloehn) was used. The dispensed volume was 1 and 5 mL. The systematic error was less than 0.1%, and the random one was less than 3 μL. Project files are available at: http://www.mass-spec.ru/projects/diy/syringe_pump/eng/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Holder (stand) for 20/30 gas chromatography (GC) vials. http://www.thingiverse.com/thing:399955. Accessed December 13, 2018.

  2. Modular Eppendorf tube rack V2.0. http://www.thingiverse.com/thing:2794834. Accessed December 13, 2018.

  3. F.Lab’s DIYbio centrifuge. http://www.thingiverse.com/thing:1175393. Accessed December 13, 2018.

  4. El-cheapo tabletop minifuge. http://www.thingiverse.com/thing:33818. Accessed December 13, 2018.

  5. Magnetic stirrer from a 80-mm fan. http://www.thingiverse.com/thing:1663540. Accessed December 13, 2018.

  6. F.Lab’s DIYbio magnetic stirrer. http://www.thingiverse.com/thing:1175415. Accessed December 13, 2018.

  7. Mercer, C. and Leech, D., J. Chem. Educ., 2017, vol. 94, no. 6, p. 816.

    Article  CAS  Google Scholar 

  8. Dhankani, K.C. and Pearce, J.M., HardwareX, 2017, vol. 1, p. 1.

    Article  Google Scholar 

  9. Low-cost peristaltic pump. http://www.thingiverse.com/thing:254956. Accessed December 13, 2018.

  10. Peristaltic Pump Improved for Nema 17. http://www.thingiverse.com/thing:1134817. Accessed December 13, 2018.

  11. iGem Hardware. http://2017.igem.org/ Team:Aachen/Hardware. Accessed December 13, 2018.

  12. Kubinova, S. and Slegr, J., J. Chem. Educ., 2015, vol. 92, no. 10, p. 1751.

    Article  CAS  Google Scholar 

  13. Papadopoulos, N.J. and Jannakoudakis, A., J. Chem. Educ., 2016, vol. 93, no. 7, p. 1323.

    Article  CAS  Google Scholar 

  14. **, H., Qin, Y., Pan, S., Alam, A.U., Dong, S., Ghosh, R., and Deen, M.J., J. Chem. Educ., 2018, vol. 95, no. 2, p. 326.

    Article  CAS  Google Scholar 

  15. Famularo, N., Kholod, Y., and Kosenkov, D., J. Chem. Educ., 2016, vol. 93, no. 1, p. 175.

    Article  CAS  Google Scholar 

  16. Milanovic, J.Z., Milanovic, P., Kragic, R., and Kostic, M., PLoS One, 2018, vol. 13, no. 3, e0193744.

    Article  Google Scholar 

  17. Grinias, J.P., Whitfield, J.T., Guetschow, E.D., and Kennedy, R.T., J. Chem. Educ., 2016, vol. 93, no. 7, p. 1316.

    Article  CAS  Google Scholar 

  18. Walkowiak, M. and Nehring, A., J. Chem. Educ., 2016, vol. 93, no. 4, p. 778.

    Article  CAS  Google Scholar 

  19. Cao, T., Zhang, Q., and Thompson, J.E., J. Chem. Educ., 2015, vol. 92, no. 1, p. 106.

    Article  CAS  Google Scholar 

  20. Biropette: Customisable, high precision pipette. http://www.thingiverse.com/thing:255519. Accessed December 13, 2018.

  21. Bravo-Martínez, J., HardwareX, 2018, vol. 3, p. 110.

    Article  Google Scholar 

  22. Brennan, M.D., Bokhari, F.F., and Eddington, D.T., Micromachines, 2018, vol. 9, no. 4, p. 191.

    Article  Google Scholar 

  23. Anzalone, G., Glover, A., and Pearce, J., Sensors, 2013, vol. 13, no. 4, p. 5338.

    Article  CAS  Google Scholar 

  24. McClain, R.L., J. Chem. Educ., 2014, vol. 91, no. 5, p. 747.

    Article  CAS  Google Scholar 

  25. Wittbrodt, B.T., Squires, D.A., Walbeck, J., Campbell, E., Campbell, W.H., and Pearce, J.M., PLoS One, 2015, vol. 10, no. 8, p. e0134989.

    Article  Google Scholar 

  26. Prikryl, J. and Foret, F., Anal. Chem., 2014, vol. 86, no. 24, p. 11951.

    Article  CAS  Google Scholar 

  27. Cecil, F., Zhang, M., Guijt, R.M., Henderson, A., Nesterenko, P.N., Paull, B., Breadmore, M.C., and Macka, M., Anal. Chim. Acta, 2017, vol. 965, p. 131.

    Article  CAS  Google Scholar 

  28. Carvalho, M.C. and Eyre, B.D., Methods Oceanogr., 2013, vol. 8, p. 23.

    Article  Google Scholar 

  29. Hsieh, K.-T., Liu, P.-H., and Urban, P.L., Anal. Chim. Acta, 2015, vol. 894, p. 35.

    Article  CAS  Google Scholar 

  30. Chen, C.-L., Chen, T.-R., Chiu, S.-H., and Urban, P.L., Sens. Actuators, B, 2017, vol. 239, p. 608.

    Article  CAS  Google Scholar 

  31. Carvalho, M.C. and Murray, R.H., HardwareX, 2018, vol. 3, p. 10.

    Article  Google Scholar 

  32. 3D-Printed syringe pump rack. http://www.instructables.com/id/3D-Printed-Syringe-Pump-Rack/. Accessed December 13, 2018.

  33. Patrick, W., Open source syringe pump. http://fab.cba.mit.edu/classes/863.13/people/wildebeest/projects/final/index.html. Accessed Decem-ber 13, 2018.

  34. Connelly, B., Trying to make the worlds cheapest syringe pump/linear drive. http://www.billconnelly.net/?p=176. Accessed December 13, 2018.

  35. Syringe pump mechanicals. https://publiclab.org/notes/JSummers/12-30-2014/syringe-pump-mechanicals. Accessed December 13, 2018.

  36. Ultra-low flow rates with DIY syringe pumps. http://www.thepulsar.be/article/ultra-low-flow-rates-with-diy-syringes-pumps/. Accessed December 13, 2018.

  37. Arduino controller for our low-cost syringe pump. http://www.thepulsar.be/article/arduino-controller-for-our-low-cost-syringe-pump/. Accessed Decem-ber 13, 2018.

  38. Croatt Research Group. Flow Chemistry. https://chem.uncg.edu/croatt/flow-chemistry/. Accessed December 13, 2018.

  39. Syringe pump. https://karpova-lab.github.io/syringe-pump/index.html. Accessed December 13, 2018.

  40. Poseidon system: Open source syringe pumps and microscope for laboratories. https://github.com/pachterlab/poseidon. Accessed December 13, 2018.

  41. Wijnen, B., Hunt, E.J., Anzalone, G.C., and Pearce, J.M., PLoS One, 2014, vol. 9, no. 9, e107216.

    Article  Google Scholar 

  42. Ryzhov, O.A., Molodoi Uchenyi, 2015, no. 11, p. 425.

  43. Cubberley, M.S. and Hess, W.A., J. Chem. Educ., 2017, vol. 94, no. 1, p. 72.

    Article  CAS  Google Scholar 

  44. LeSuer, R.J., Osgood, K.L., Stelnicki, K.E., and Mendez, J.L., HardwareX, 2018, vol. 4, e00038.

    Article  Google Scholar 

  45. Garcia, V.E., Liu, J., and DeRisi, J.L., HardwareX, 2018, vol. 4, e00027.

    Article  Google Scholar 

  46. Creative Commons. https://creativecommons.org/licenses/by-sa/4.0/. Accessed December 13, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Samokhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samokhin, A.S. Syringe Pump Created using 3D Printing Technology and Arduino Platform. J Anal Chem 75, 416–421 (2020). https://doi.org/10.1134/S1061934820030156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820030156

Keywords:

Navigation