Log in

Efficiency of a cobalt-containing matrix modifier based on activated carbon for the electrothermal atomic absorption determination of the highly volatile elements

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The energies of the chemisorption of As, Se, Pb, and Cd atoms by palladium and cobalt metal surfaces were calculated by a quantum chemistry method. The analytical applicability of a cobalt-containing chemical modifier based on activated carbon to the determination of the highly volatile elements by electrothermal atomic absorption spectrometry (ETAAS) was hypothesized. A procedure for the preparation of the cobalt-containing chemical modifier based on activated carbon was substantiated using thermodynamic simulation, thermal analysis, and ETAAS. This procedure ensured the formation of a Co0 metal phase and the occurrence of thermal stabilizing interactions with analytes at the stage of drying. The concentrations of arsenic and lead in the suspensions of a standard reference sample of marine algae were determined with the use of the developed chemical modifier based on activated carbon. The experimental results were consistent with the certified values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pupyshev, A.A., Atomno-absorbtsionnyi spektral’nyi analiz (Atomic Absorption Spectral Analysis), Moscow: Tekhnosfera, 2009.

    Google Scholar 

  2. Dedina, J., Frech, W., Cedergren, A., Lindberg, I., and Lundberg, E., Anal. At. Spectrom., 1987, vol. 2, no. 5, p. 435.

    Article  CAS  Google Scholar 

  3. Fisher, J.L. and Rademeyer, C.J., Spectrochim. Acta, Part B, 1998, vol. 53, no. 4, p. 549.

    Article  Google Scholar 

  4. Volynsky, A.B., Spectrochim. Acta, Part B, 2000, vol. 55, no. 1, p. 103.

    Article  Google Scholar 

  5. L’vov, B., Spectrochim. Acta, Part B, 2000, vol. 55, no. 11, p. 1665.

    Google Scholar 

  6. Ortner, H.M., Bulska, E., Rohr, U., Schlemmer, G., Weinbruch, S., and Welz, B., Spectrochim. Acta, Part B, 2002, vol. 57, no. 12, p. 1835.

    Article  Google Scholar 

  7. Volynskii, A.B., J. Anal. Chem., 2003, vol. 58, no. 10, p. 905.

    Article  CAS  Google Scholar 

  8. Pupyshev, A.A., Ukr. Khim. Zh., 2005, vol. 71, nos. 9–10, p. 17.

    CAS  Google Scholar 

  9. Volynsky, A.B., Spectrochim. Acta, Part B, 1998, vol. 53, p. 1607.

    Article  Google Scholar 

  10. Styris, D.L., Prell, L.J., Redfield, D.A., Holcombe, J.A., Bass, D.A., and Majidi, V., Anal. Chem., 1991, vol. 63, no. 5, p. 503.

    Article  CAS  Google Scholar 

  11. L’vov, B., Spectrochim. Acta, Part B, 2000, vol. 55, no. 12, p. 1915.

    Google Scholar 

  12. Malykhin, S.E., Burylin, M.Yu., Burylin, M.Yu., and Zil’berberg, I.L., J. Struct. Chem., 2011, vol. 52, no. 6, p. 1098.

    Article  CAS  Google Scholar 

  13. Kon, V., Usp. Fiz. Nauk, 2002, vol. 172, no. 3, p. 336.

    Article  Google Scholar 

  14. Sturgeon, R.E., Willi, S.N., Sproule, G.I., Robinson, P.T., and Berman, S.S., Spectrochim. Acta, Part B, 1989, vol. 44, no. 7, p. 667.

    Article  Google Scholar 

  15. Saeed, K. and Thomassen, Y., Anal. Chim. Acta, 1979, vol. 110, no. 2, p. 285.

    Article  CAS  Google Scholar 

  16. Bulska, E. and Pyrzynska, K., Spectrochim. Acta, Part B, 1997, vol. 52, nos. 9–10, p. 1283.

    Article  Google Scholar 

  17. Shoukry, A.F., Issa, Y.M., Farghaly, R.A., Grasserbauer, M., Puxbaum, H., and Rendl, J., Fresenius’ J. Anal. Chem., 1998, vol. 360, p. 650.

    Article  CAS  Google Scholar 

  18. Narukawa, T., Uzawa, A., Yoshimura, W., and Okutani, T., Anal. Sci., 1998, vol. 14, no. 8, p. 779.

    Article  CAS  Google Scholar 

  19. Voth-Beach, L.M. and Shrader, D.E., Anal. At. Spectrom., 1987, vol. 2, no. 1, p. 45.

    Article  CAS  Google Scholar 

  20. Perdew, J., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  21. Vanderbilt, D., Phys. Rev. B, 1990, vol. 41, p. 7892.

    Article  Google Scholar 

  22. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., J. Phys.: Condens. Matter, 2009, vol. 21, p. 395502.

    Google Scholar 

  23. Pupyshev, A.A., Doctoral (Chem.) Dissertation, Yekaterinburg, 1994.

    Google Scholar 

  24. Pupyshev, A.A. and Muzgin, V.N., Zh. Anal. Khim., 1993, vol. 48, no. 5, p. 774.

    CAS  Google Scholar 

  25. Pupyshev, A.A., Vasil’eva, N.L., Kalennikova, N.V., and Muzgin, V.N., Zh. Anal. Khim., 1994, vol. 49, no. 10, p. 1083.

    CAS  Google Scholar 

  26. Pupyshev, A.A., J. Anal. Chem., 2000, vol. 55, no. 8, p. 706.

    Article  CAS  Google Scholar 

  27. Volynsky, A.B. and Wennrich, R., Anal. At. Spectrom., 2001, vol. 16, p. 179.

    Article  CAS  Google Scholar 

  28. Burylin, M.Yu., Temerdashev, Z.A., Pupyshev, A.A., Kaunova, A.A., and Obogrelova, S.A., J. Appl. Spectrosc., 2006, vol. 73, no. 5, p. 760.

    Article  CAS  Google Scholar 

  29. Burylin, M.Yu., Temerdashev, Z.A., and Burylin, S.Yu., J. Anal. Chem., 2006, vol. 61, no. 1, p. 37.

    Article  CAS  Google Scholar 

  30. Pupyshev, A.A., Termodinamicheskoe modelirovanie termokhimicheskikh protsessov v spektral’nykh istochnikakh. Uchebnoe elektronnoe tekstovoe izdanie (Thermodynamic Simulation of Thermochemical Processes in Spectral Sources. Educational Electronic Text Edition), Yekaterinburg: GOU VPO UGTU-UPI, 2007.

    Google Scholar 

  31. Burylin, M.Yu., Vnukova, A.A., and Temerdashev, Z.A., Zavod. Lab., Diagn. Mater., 2006, vol. 72, no. 5, p. 3.

    CAS  Google Scholar 

  32. Kratkaya khimicheskaya entsiklopediya (Brief Chemical Encyclopedia), vol. 2, Knunyants, I.L., Ed., Moscow: Sovetskaya entsiklopediya, 1963, p. 611.

    Google Scholar 

  33. Pupyshev, A.A. and Nagdaev, V.K., Zh. Prikl. Spectrosk., 1980, vol. 33, no. 2, p. 227.

    CAS  Google Scholar 

  34. Orlova, V.A., Sedykh, E.M., Smirnov, V.V., and Bannykh, L., Zh. Anal. Khim., 1990, vol. 45, no. 5, p. 933.

    CAS  Google Scholar 

  35. Schlemmer, G. and Welz, B., Spectrochim. Acta, Part B, 1986, vol. 41, no. 11, p. 1157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Burylin.

Additional information

Original Russian Text © M.Yu. Burylin, S.E. Malykhin, E.F. Galai, 2015, published in Zhurnal Analiticheskoi Khimii, 2015, Vol. 70, No. 4, pp. 380–388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burylin, M.Y., Malykhin, S.E. & Galai, E.F. Efficiency of a cobalt-containing matrix modifier based on activated carbon for the electrothermal atomic absorption determination of the highly volatile elements. J Anal Chem 70, 459–467 (2015). https://doi.org/10.1134/S1061934815040036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934815040036

Keywords

Navigation