Log in

Influence of the Structure of Sulfonic Polyelectrolyte Matrices on the Adsorption of Cu2+ Ions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Porous hydrophilic polyelectrolyte matrices have been obtained by reverse suspension copolymerization of p-styrenesulfonate with N,N'-methylenebisacrylamide, as well as by cryotropic gelation of sulfonic acrylates (3-sulfopropyl methacrylate and sulfobetaine methacrylate). It has been shown that the concentration of sulfonate groups in the obtained polyelectrolytes is 2–3 mmol/g. The morphology and structure of the surface layer of the polyelectrolyte matrices have been studied by scanning electron microscopy and FTIR spectroscopy, while the specific surface area and pore size distribution have been investigated by the BET method. Adsorption of Cu2+ ions has been studied spectrophotometrically. It has been found that polyelectrolyte matrices containing aromatic sulfonate groups have the maximum sorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Malakhova, I., Privar, Y., Parotkina, Y., Mironenko, A., Eliseikina, M., Balatskiy, D., Golikov, A., and Brat-skaya, S., Rational design of polyamine-based cryogels for metal ion sorption, Molecules, 2020, vol. 25, no. 20, p. 4801. https://doi.org/10.3390/molecules25204801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qi, X., Liu, R., Chen, M., Li, Z., Qin, T., Qian, Y., Zhao, S., Liu, M., Zeng, Q., Shen, J., and Shen, J., Removal of copper ions from water using polysaccharide-constructed hydrogels, Carbohydr. Polym., 2019, vol. 209, pp. 101–110. https://doi.org/10.1016/j.carbpol.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  3. Izumrudov, V.A., Soluble polyelectrolyte complexes of biopolymers, Polym. Sci., Ser. A, 2012, vol. 54, no. 7, pp. 513–520. https://doi.org/10.1134/S0965545X12010117

    Article  CAS  Google Scholar 

  4. Zorin, I.M., Shcherbinina, T.M., Mel’nikov, A.B., Molchanov, V.S., and Bilibin A.Yu., A study of n-dodecylammonium acrylamido-2-methylpropanesulfonate association in aqueous solutions, Colloid J., 2014, vol. 76, no. 3, pp. 314–318. https://doi.org/10.1134/S1061933X14030168

    Article  CAS  Google Scholar 

  5. Laishevkina, S., Iakobson, O., Saprykina, N., Dobrodumov, A., Chelibanov, V., Tomšík, E., and Shevchenko, N., Hydrophilic polyelectrolyte microspheres as a template for poly(3,4-ethylenedioxythiophene) synthesis, Soft Matter, 2023, vol. 19, no. 22, pp. 4144–4154. https://doi.org/10.1039/D3SM00372H

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Laishevkina, S., Skurkis, Y., and Shevchenko, N., Preparation and properties of cryogels based on poly(sulfopropyl methacrylate) or poly(sulfobetaine methacrylate) with controlled swelling, J. Sol-Gel Sci. Technol., 2022, vol. 102, no. 2, pp. 343–356. https://doi.org/10.1007/s10971-022-05770-8

    Article  CAS  Google Scholar 

  7. Jahn, P., Zelner, M., Freger, V., and Ulbricht, M., Polystyrene sulfonate particles as building blocks for nanofiltration membranes, Membranes, 2022, vol. 12, no. 11, p. 1138. https://doi.org/10.3390/membranes12111138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai, L., Ying, D., Liang, X., Zhu, M., Lin, X., Xu, Q., Cai, Z., Xu, X., and Zhang, L., A novel cationic polyelectrolyte microsphere for ultrafast and ultra-efficient removal of heavy metal ions and dyes, Chem. Eng. J., 2021, vol. 410, p. 128404. https://doi.org/10.1016/j.cej.2021.128404

    Article  CAS  Google Scholar 

  9. Bucatariu, F., Schwarz, D., Zaharia, M., Steinbach, C., Ghiorghita, C.-A., Schwarz, S., and Mihai, M., Nanostructured polymer composites for selective heavy metal ion sorption, Colloids Surf., A, 2020, vol. 603, p. 125211. https://doi.org/10.1016/j.colsurfa.2020.125211

    Article  CAS  Google Scholar 

  10. Gandurina, L.V., Ochistka stochnykh vod s primeneniem sinteticheskikh polielektrolitov (Wastewater Treatment Using Synthetc Polyelectrolytes), Moscow: ZAO “Dar/Vodgeo,”, 2007.

  11. Akperov, O.H., Maharramov, A.M., Akperov, E.O., and Shirinova, E.A., Ammonium salt of the cross-linked maleic acid–allylpropionate–styrene terpolymer as effective sorbent for removal of Cu2+ ions from water solutions (sorption of the copper ions), J. Dispersion Sci. Technol., 2018, vol. 39, no. 9, pp. 1244–1251. https://doi.org/10.1080/01932691.2017.1391703

    Article  CAS  Google Scholar 

  12. Zamariotto, D., Lakard, B., Fievet, P., and Fatin-Rouge, N., Retention of Cu(II)- and Ni(II)-polyaminocarboxylate complexes by ultrafiltration assisted with polyamines, Desalination, 2010, vol. 258, nos. 1–3, pp. 87–92. https://doi.org/10.1016/j.desal.2010.03.040

    Article  CAS  Google Scholar 

  13. Saad, D.M., Cukrowska, E.M., and Tutu, H., Development and application of cross-linked polyethylenimine for trace metal and metalloid removal from mining and industrial wastewaters, Toxicol. Environ. Chem., 2011, vol. 93, no. 5, pp. 914–924. https://doi.org/10.1080/02772248.2011.575785

    Article  CAS  Google Scholar 

  14. Shevchenko, N., Tomsik, E., Laishevkina, S., and Pankova, G., Cross-linked polyelectrolyte microspheres: Preparation and new insights into electro-surface properties, Soft Matter, 2021, vol. 17, no. 8, pp. 2290–2301. https://doi.org/10.1039/D0SM02147D

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Privar, Y.O., Pestov, A.V., Azarova, Y.A., and Bratskaya, S.Y., Thiocarbamoyl derivatives of polyallylamine for gold and silver recovery from ammonia-thiosulfate leachates, Non-Ferrous Met., 2018, vol. 1, pp. 12–17. https://doi.org/10.17580/nfm.2018.01.03

    Article  Google Scholar 

  16. Malakhova, I., Privar, Y., Azarova, Y., Eliseikina, M., Golikov, A., Skatova, A., and Bratskaya, S., Supermacroporous monoliths based on polyethyleneimine: Fabrication and sorption properties under static and dynamic conditions, J. Environ. Chem. Eng., 2020, vol. 8, no. 6, p. 104395. https://doi.org/10.1016/j.jece.2020.104395

    Article  CAS  Google Scholar 

  17. Dragan, E.S. and Loghin, D.F.A., Fabrication and characterization of composite cryobeads based on chitosan and starches-g-PAN as efficient and reusable biosorbents for removal of Cu2+, Ni2+, and Co2+ ions, Int. J. Biol. Macromol., 2018, vol. 120, Part B, pp. 1872–1883. https://doi.org/10.1016/j.ijbiomac.2018.10.007

    Article  CAS  PubMed  Google Scholar 

  18. Han, Y., Jiang, Y., and Gao, C., High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 15, pp. 8147–8155. https://doi.org/10.1021/acsami.5b00986

    Article  CAS  PubMed  Google Scholar 

  19. Shevchenko, N.N., Pankova, G.A., and Laishevkina, S.G., Influence of the structure of a surface layer of methyl methacrylate-based cationic particles on adsorption of biomolecules, Colloid J., 2020, vol. 82, no. 6, pp. 758–766. https://doi.org/10.1134/S1061933X20060150

    Article  CAS  Google Scholar 

  20. Shevchenko, N.N., Pankova, G.A., Shabsel’s, B.M., and Baigildin, V.A., Emulsifier-free emulsion copolymerization of methyl methacrylate as a method of obtaining cationic particles for diagnostics of tick-borne encephalitis virus, Colloid J., 2020, vol. 82, no. 2, pp. 208–216. https://doi.org/10.1134/S1061933X20020118

    Article  CAS  Google Scholar 

  21. Nunes, S.P., Culfaz-Emecen, P.Z., Ramon, G.Z., Visser, T., Koops, G.H., **, W., and Ulbricht, M., Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes, J. Membr. Sci., 2020, vol. 598, p. 117761. https://doi.org/10.1016/j.memsci.2019.117761

    Article  CAS  Google Scholar 

  22. Syed Ibrahim, G.P., Isloor, A.M., Bavarian, M., and Nejati, S., Integration of zwitterionic polymer nanoparticles in interfacial polymerization for ion separation, ACS Appl. Polym. Mater., 2020, vol. 2, no. 4, pp. 1508–1517. https://doi.org/10.1021/acsapm.9b01192

    Article  CAS  Google Scholar 

  23. Shevchenko, N., Steinhart, M., and Tomsik, E., Single-step preparation of mono-dispersed sulfur nanoparticles for detention of copper, J. Nanopart. Res., 2019, vol. 21, no. 246, pp. 1–12. https://doi.org/10.1007/S11051-019-4673-4

    Article  Google Scholar 

  24. Iakobson, O.D., Dobrodumov, A.V., Saprykina, N.N., and Shevchenko, N.N., Dextran nanoparticles cross-linked in aqueous and aqueous/alcoholic media, Macromol. Chem. Phys., 2017, vol. 218, no. 10, p. 1600523. https://doi.org/10.1002/MACP.201600523

    Article  Google Scholar 

  25. Pergushov, D.V., Remizova, E.V., Zezin, A.B., et al., Interpolyelectrolyte complex formation is possible in low-polarity organic media, Dokl. Phys. Chem., 2006, vol. 406, no. 2, pp. 38–42.

    Article  CAS  Google Scholar 

  26. Hamzah, Y.B., Hashim, S., and Rahman, W.A.W.A., Synthesis of polymeric nano/microgels: A review, J. Polym. Res., 2017, vol. 24, no. 134, pp. 1–19. https://doi.org/10.1007/s10965-017-1281-9

    Article  CAS  Google Scholar 

  27. Polyanskii, N.G., Gorbunov, G.V., and Polyanskaya, N.L., Metody issledovaniya ionitov (Methods for Studying Ion Exchangers), Moscow: Khimiya, 1976.

  28. Gulrez, H.S.K., Saphwan, A.-A., and Glyn, O.P., Hydrogels: Methods of preparation, characterisation and applications, in Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications, Pisa: InTech, 2011. 10.5772/24553

  29. Plieva, F.M., Karlsson, M., Aguilar, M.R., Gomez, D., Mikhalovsky, S., and Galaev, I. Yu., Pore structure in supermacroporous polyacrylamide based cryogels, Soft Matter, 2005, vol. 1, no. 4, pp. 303–309. https://doi.org/10.1039/B510010K

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Kabanov, V.A., Polyelectrolyte complexes in solution and in bulk, Usp. Khim., 2005, vol. 74, no. 1, pp. 5–23.

    Article  Google Scholar 

  31. Polyelectrolytes with Defined Molecular Architecture II: Advances in Chemical Physics, Schmidt, M., Ed., Berlin, Heidelberg: Springer-Verlag, 2004.

    Google Scholar 

  32. Koetz, J. and Kosmella, S., Polyelectrolytes and Nanoparticles, Berlin Heidelberg: Springer-Verlag, 2007.

    Google Scholar 

  33. Chernysheva, M.G., Popov, A.G., Tashlitsky, V.N., and Badun, G.A., Cationic surfactant coating nanodiamonds: Adsorption and peculiarities, Colloids Surf., A, 2019, vol. 565, pp. 25–29. https://doi.org/10.1016/j.colsurfa.2018.12.057

    Article  CAS  Google Scholar 

  34. Silverstein, R.M., Morrill, T.C., and Bassler, G.C., Spectrometric Identification of Organic Compounds, New York: Wiley, 1974, 3rd ed.

    Google Scholar 

  35. Gospodinova, N., Tomšík, E., and Omelchenko, O., How strong are strong poly(sulfonic acids)? An example of the poly(2-acrylamido-2-methyl-1-propanesulfonic acid), Eur. Polym. J., 2016, vol. 74, pp. 130–135. https://doi.org/10.1016/j.eurpolymj.2015.11.025

    Article  CAS  Google Scholar 

  36. Kirillov, A., Gorshkov, N., Shevchenko, N., Saprykina, N., and Krasikov, V., Tuning the porosity of hypercrosslinked styrene-divinylbenzene copolymers for efficient adsorption of rifampicin from aqueous media, J. Polym. Res., 2023, vol. 30, no. 11, p. 405. https://doi.org/10.1007/s10965-023-03802-7

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.A. Makarov (Special Design and Technological Bureau “Tekhnolog,” St. Petersburg, Russia) for supplying detonation nanodiamonds and senior researcher A.V. Eremin, PhD (Institute of Macromolecular Compounds, Russian Academy of Sciences) for the registration and assistance in interpretation of the FTIR spectrum of nanodiamonds.

Funding

The work was carried out within the framework of the state order (no. 122012000450-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Shevchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laishevkina, S.G., Iakobson, O.D., Ivan’kova, E.M. et al. Influence of the Structure of Sulfonic Polyelectrolyte Matrices on the Adsorption of Cu2+ Ions. Colloid J 86, 86–97 (2024). https://doi.org/10.1134/S1061933X23600999

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600999

Keywords:

Navigation