Log in

Biocompatible Hydrogels Based on Biodegradable Polyesters and Their Copolymers

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol)-based hydrogels have long proved to be promising materials for various biomedical technologies. This review considers systems based on the most common and studied copolymers of poly(ethylene glycol) and biodegradable polyesters of lactide and glycolide. Traditional and modern approaches to the synthesis of the copolymers and the production of hydrogels have been considered, the studies of the structure and properties of the materials have been analyzed, and the main directions of the application of these products in practice have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

REFERENCES

  1. Maksimova, Yu.G., Shchetko, V.A, and Maksimov, A.Yu., Polymer hydrogels in agriculture (review), S-kh. Biol., 2023, vol. 58, no. 1, pp. 23–42. https://doi.org/10.15389/agrobiology.2023.1.23rus

    Article  Google Scholar 

  2. Kaur, P., Agrawal, R., Pfeffer, F.M., et al., Hydrogels in agriculture: Prospects and challenges, J. Polym. Environ., 2023, vol. 35, pp. 3701–3718. https://doi.org/10.1007/s10924-023-02859-1

    Article  CAS  Google Scholar 

  3. Asulyan, L.D., Boyarkina, V.V, and Agaeva, M.V., Polyvinyl alcohol hydrogels as moisture-retaining sorbents, Izv. Tul’sk. Gos. Univ. Estestv. Nauki, 2021, no. 1, pp. 13–19. https://doi.org/10.24412/2071-6176-2021-1-13-19

  4. Rabadanov, R.G., Rabadanov, G.G., Mukailov, M.D., and Ataev, M.Z., Highly swelling polymer hydrogels in fruit-bearing vineyards of Southern Dagestan, Problemy Razvitiya APK Regiona, 2017, vol. 29, no. 1(29), pp. 46–52.

  5. Tran, N-P-D., Yang M-C. and Tran-Nguyen, P.L., Evaluation of silicone hydrogel contact lenses based on poly(dimethylsiloxane) dialkanol and hydrophilic polymers, Colloids Surf., B, 2021, vol. 206, p. 111957. https://doi.org/10.1016/j.colsurfb.2021.111957

    Article  CAS  Google Scholar 

  6. Bondarenko, P.I., Pinchuk, L.S., Dravitsa, L.V., and Bondarenko, N.Yu., Therapeutic contact lenses and methods for their manufacture (review), Oftal’mologiya. Vostochnaya Evropa, 2011, no. 3(10), pp. 78–91.

  7. Mel’nik, S.I., Torikashvili, V.D., Yakuta, K.D., and Lebedeva, S.A., Wound dressings and soft dosage forms based on collagen for the treatment of wounds of various etiologies, Farmatsevticheskoe Delo i Tekhnologiya Lekarstv, 2020, no. 6, pp. 10–16. https://doi.org/10.33920/med-13-2006-01

  8. Kuznetsova, T.A., Besednova, N.N., Usov, V.V., and Andryukov, B.G., Biocompatible and biodegradable wound dressings on the basis of seaweed polysaccharides (review of literature), Vestn. Khir. im. I.I. Grekova, 2020, vol. 179, no. 4, pp. 109–115. https://doi.org/10.24884/0042-4625-2020-179-4-109-115

    Article  Google Scholar 

  9. Dudanov, I.P., Vinogradov, V.V., Krishtop, V.V., and Nikonorova, V.G., Advantages and disadvantages of B gels for local treatment of burn wounds and scars, Vestnik Novykh Meditsinskikh Tekhnologii. Elektronnoe Izdanie, 2022, vol. 16, no. 2, pp. 13–22. https://doi.org/10.24412/2075-4094-2022-2-1-2

    Article  Google Scholar 

  10. Ushmarov, D.I., Gumenyuk, A.S., and Gumenyuk, S.E., et al., Comparative evaluation of chitosan-based multifunctional wound dressings: A multistage randomised controlled experimental trial, Kubanskii Nauchnyi Meditsinskii Vestnik, 2021, vol. 28, no. 3, pp. 78–96. https://doi.org/10.25207/1608-6228-2021-28-3-78-96

    Article  Google Scholar 

  11. Glukhova, S.A., Molchanov, V.S., Kharitonova, E.P., et al., Green nanocomposite gels based on diblock network of sodium alginate and percolating halloysite clay nanotubes for 3d printing, Carbohydr. Polymers, 2022, vol. 282, p. 119106. https://doi.org/10.1016/j.carbpol.2022.119106

    Article  CAS  Google Scholar 

  12. Grigor’ev, A.M., Basok, Yu.B., Kirillova, A.D., et al., Cryogenically structured gelatin-based hydrogel as a resorbable macroporous matrix for biomedical technologies, Vestnik Transplantologii i Iskusstvennykh Organov, 2022, vol. 24, no. 2, pp. 83–93. https://doi.org/10.15825/1995-1191-2022-2-83-93

    Article  Google Scholar 

  13. Osidak, E.O., Andreev, A.Yu., Avetisov, S.E., et al., Corneal stroma regeneration with collagen-based hydrogel as an artificial stroma equivalent: A comprehensive in vivo study, Polymers, 2022, vol. 14, no. 19, p. 4017. https://doi.org/10.3390/polym14194017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vasil’ev, A.V., Kuznetsova, V.S., Galitsyna, E.V., et al., Biocompatibility and osteoinductive properties of collagen and fibronectin hydrogel impregnated with RHBMP-2, Stomatologiya, 2019, vol. 98, no. 6(2), pp. 5–11. https://doi.org/10.17116/stomat2019980625

  15. Shilova, S.V., Mirgaleev, G.M., Volkova, M.V., et al., Antibiotic cefotaxime biocompatible delivery systems based on calcium alginate gel microparticles, Vestn. Kazan. Tekhnol. Univ., 2021, vol. 24, no. 12, pp. 56–59.

    Google Scholar 

  16. Yermak, I.M., Gorbach, V.I., Karnakov, I.A., Davydova, V.N., et al., Carrageenan gel beads for echinochrome inclusion: influence of structural features of carrageenan, Carbohydr. Polym., 2021, vol. 272, p. 118479. https://doi.org/10.1016/j.carbpol.2021.118479

    Article  CAS  PubMed  Google Scholar 

  17. Vasilyev, A.V., Kuznetsova, V.S., Bukharova, T.B., et al., Influence of the degree of deacetylation of chitosan and BMP-2 concentration on biocompatibility and osteogenic properties of BMP-2/PLA granule-loaded chitosan/β-glycerophosphate hydrogels, Molecules, 2021, vol. 26, no. 2, p. 261. https://doi.org/10.3390/molecules26020261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Z., Ye, Q., Yu, S., and Akhavan, B., Polyethylene glycol (PEG)-based hydrogels for drug delivery in cancer therapy: A comprehensive review, Adv. Healthcare Mater., 2023, vol. 12, no. 18, p. 2300105. https://doi.org/10.1002/adhm.202300105

    Article  CAS  Google Scholar 

  19. Bakeeva, I.V., Doktorova, A.V., Damshkaln, L.G., et al., A study of cryostructuring of polymer systems. 54. Hybrid organo-inorganic poly(vinyl alcohol) cryogels filled with in situ formed silica, Colloid J., 2021, vol. 83, no. 1, pp. 49–63. https://doi.org/10.1134/S1061933X21010026

    Article  CAS  Google Scholar 

  20. Jeong, B., Wang, L.Q., and Gutowska, A., Biodegradable thermoreversible gelling PLGA-g-PEG copolymers†, Chem. Commun., 2001, no. 16, pp. 1516–1517. https://doi.org/10.1039/B102819G

  21. Cui, S., Yu, L., and Ding, J., Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type, Macromolecules, 2019, vol. 52, pp. 3697−3715. https://doi.org/10.1021/acs.macromol.9b00534

    Article  CAS  Google Scholar 

  22. Yu, L. and Ding, J., Injectable hydrogels as unique biomedical materials, Chem. Soc. Rev., 2008, vol. 37, pp. 1473–1481. https://doi.org/10.1039/B713009K

    Article  CAS  PubMed  Google Scholar 

  23. Kricheldorf, H.R. and Meier-Haack, J., Polylactones, 22† ABA triblock copolymers of L-lactide and poly(ethylene glycol), Macromol. Chem., 1993, vol. 194, no. 2, pp. 715–725. https://doi.org/10.1002/macp.1993.021940229

    Article  CAS  Google Scholar 

  24. Deng, X.M., Xu, R.P., **ong, C.D., and Cheng, L.M., Synthesis and characterization of block copolymers from D,L-lactide and poly(ethylene glycol) with stannous chloride, J. Polym. Sci., Part C: Polym. Lett., 1990, vol. 28, no. 13, pp. 411–416. https://doi.org/10.1002/pol.1990.140281303

    Article  CAS  Google Scholar 

  25. Kissel. T., Li, Y.X. and Volland, C., Properties of block- and random-copolymers of lactic acid and glycolic acid, Proc. Int. Symp. Controlled Release Bioact. Mater., 1993, pp. 127–128.

  26. Youxin, L. and Kissel, T., Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly (L-lactic acid) or poly (L-lactic-co-glycolic acid) A-blocks attached to central poly (oxyethylene) b-blocks, J. Controlled Release, 1993, vol. 27, no. 3, pp. 247–257. https://doi.org/10.1016/0168-3659(93)90155-X

    Article  Google Scholar 

  27. Stevels, W.M., Ankone, M.L.K., Dijkstra, P.J., and Feijen, J., Kinetics and mechanism of L-lactide poly-merization using two different yttrium alkoxides as initiators, Macromolecules, 1996, vol. 29, no. 19, pp. 6132–6138. https://doi.org/10.1021/ma9605311

    Article  CAS  Google Scholar 

  28. Stevels, W.M., Ankone, M.L.K., Dijkstra, P.J., and Feijen, J., A versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols, Macromolecules, 1996, vol. 29, no. 9, pp. 3332–3333. https://doi.org/10.1021/ma951813o

    Article  CAS  Google Scholar 

  29. Li, S., Anjard, S., Rashkov, I., and Vert, M., Hydrolytic degradation of PLA/PEO/PLA triblock copolymers prepared in the presence of Zn metal or CaH2, Polymer, 1998, vol. 39, no. 22, pp. 5421–5430. https://doi.org/10.1016/S0032-3861(97)10272-5

    Article  CAS  Google Scholar 

  30. Cerrai, P. and Tricoli, M., Block copolymers from L-lactide and polyethylene glycol through a non-catalyzed route, Macromolecular Chemistry Rapid Communications, 1993, vol. 9, no. 9, pp. 529–538. https://doi.org/10.1002/marc.1993.030140901

    Article  Google Scholar 

  31. Sanabria-DeLong, N., Agrawal, S.K., Bhatia, S.R., and Tew, G.N., Impact of synthetic technique on PLA−PEO−PLA physical hydrogel properties, Macromolecules, 2007, vol. 40, no. 22, pp. 7864–7873. https://doi.org/10.1021/ma071243f

    Article  CAS  Google Scholar 

  32. Hamia, M. Aminib, M., et al., Synthesis and in vitro evaluation of a pH-sensitive PLA−PEG−folate based polymeric micelle for controlled delivery of docetaxel, Colloids Surf., B, 2014, vol. 116, pp. 309–317. https://doi.org/10.1016/j.colsurfb.2014.01.015

    Article  CAS  Google Scholar 

  33. Subbu, S., Venkatraman., Pan, Jie, et al., Micelle-like nanoparticles of PLA−PEG−PLA triblock copolymer as chemotherapeutic carrier, Pharm. Nanotechnol., 2005, vol. 298, no. 1, pp. 219–232. https://doi.org/10.1016/j.ijpharm.2005.03.023

    Article  CAS  Google Scholar 

  34. Li, L. Cao, Z.-Q., et al., Poly(L-lactic acid)-polyethylene glycol-poly(L-lactic acid) triblock copolymer: A novel macromolecular plasticizer to enhance the crystallization of poly(L-lactic acid), Eur. Polym. J., 2017, vol. 97, pp. 272–281. https://doi.org/10.1016/j.eurpolymj.2017.10.025

    Article  CAS  Google Scholar 

  35. Qin, W. Chuandong, W., et al., Synthesis, thermosensitive gelation and degradation study of a biodegradable triblock copolymer, J. Macromol. Sci., 2013, vol. 50, no. 2, pp. 200–207. https://doi.org/10.1080/10601325.2013.742794

    Article  CAS  Google Scholar 

  36. Darge, H.F. Andrgie, A.T., et al., Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy, Int. J. Pharm., 2019, vol. 575, p. 118799. https://doi.org/10.1016/j.ijpharm.2019.118799

    Article  CAS  Google Scholar 

  37. Yang, H. Lei, K., et al., Injectable PEG/polyester thermogel: A new liquid embolization agent for temporary vascular interventional therapy, Mater. Sci. Eng., vol. 102, pp. 606–615. https://doi.org/10.1016/j.msec.2019.04.075

  38. Darge, H.F. Andrgie, A.T., et al., Multifunctional drug-loaded micelles encapsulated in thermo-sensitive hydrogel for in vivo local cancer treatment: Synergistic effects of anti-vascular and immuno-chemotherapy, Chem. Eng. J., 2021, vol. 406, p. 126879. https://doi.org/10.1016/j.cej.2020.126879

    Article  CAS  Google Scholar 

  39. Liu, Y., Ma, W., et al., In situ administration of temperature-sensitive hydrogel composite loading paclitaxel microspheres and cisplatin for the treatment of melanoma, Biomed. Pharmacother., 2023, vol. 160, p. 114380. https://doi.org/10.1016/j.biopha.2023.114380

    Article  CAS  PubMed  Google Scholar 

  40. Tanzi, M.C. Verderio, P., et al., Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use, J. Mater. Sci.: Mater. Med., 1994, vol. 5, pp. 393–396. https://doi.org/10.1007/BF00058971

    Article  CAS  Google Scholar 

  41. Chen, G.X. Kim, H.S., et al., Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state, Eur. Polym. J., 2006, vol. 42, no. 2, pp. 468–472. https://doi.org/10.1016/j.eurpolymj.2005.07.022

    Article  CAS  Google Scholar 

  42. Fenton, O.S. Tibbitt, M.W., et al., Injectable polymer−nanoparticle hydrogels for local immune cell recruitment, Biomacromolecules, 2019, vol. 20, no. 12, pp. 4430–4436. https://doi.org/10.1021/acs.biomac.9b01129

    Article  CAS  PubMed  Google Scholar 

  43. Yin, X. Hewitt, D.R.O., et al., Impact of stereochemistry on rheology and nanostructure of PLA−PEO−PLA triblocks: Stiff gels at intermediate L/D-lactide ratios, Soft Matter, 2018, vol. 14, no. 35, pp. 7255–7263. https://doi.org/10.1039/C8SM01559G

    Article  CAS  PubMed  Google Scholar 

  44. Yin, X. Hewitt, D.R.O., et al., Effect of stereochemistry on nanoscale assembly of ABA triblock copolymers with crystallizable blocks, Polymer, 2021, vol. 223, p. 123683. https://doi.org/10.1016/j.polymer.2021.123683

    Article  CAS  Google Scholar 

  45. Mhiri, S. Abid, M., et al., Green synthesis of covalent hybrid hydrogels containing PEG/PLA-based thermoreversible networks, J. Polym. Res., 2022, vol. 29, no. 8, p. 328. https://doi.org/10.1007/s10965-022-03153-9

    Article  CAS  Google Scholar 

  46. Buwalda, S.J. Dijkstra, P.J., et al., In situ forming stereocomplexed and post-photocrosslinked acrylated star poly(ethylene glycol)-poly(lactide) hydrogels, Eur. Polym. J., 2017, vol. 94, pp. 152–161. https://doi.org/10.1016/j.eurpolymj.2017.07.002

    Article  CAS  Google Scholar 

  47. Pertici, V. Pinbarre, C., et al., Degradable and injectable hydrogel for drug delivery in soft tissues, Biomacromolecules, 2018, vol. 20, no. 1, pp. 149–163. https://doi.org/10.1021/acs.biomac.8b01242

    Article  CAS  PubMed  Google Scholar 

  48. Heskins, M. and Guillet, J.E., Solution properties of poly(N-isopropylacrylamide), J. Macromol. Sci., Chem., 1968, vol. 2, no. 8, pp. 1441–1455. https://doi.org/10.1080/10601326808051910

    Article  CAS  Google Scholar 

  49. Fujishige, S., Kubota, K., and Ando, I., Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide), J. Phys. Chem., 1989, vol. 93, no. 8, pp. 3311–3313. https://doi.org/10.1021/j100345a085

    Article  CAS  Google Scholar 

  50. Trinh, T.A., Le, T.M.D., et al., A novel injectable pH-temperature sensitive hydrogel containing chitosan-insulin electrosprayed nanosphere composite for an insulin delivery system in type I diabetes treatment, Biomaterials, 2020, vol. 8, no. 14, pp. 3830–3843. https://doi.org/10.1039/D0BM00634C

    Article  CAS  Google Scholar 

  51. Grosjean, M. Girard, E., et al., Degradable bioadhesives based on star PEG−PLA hydrogels for soft tissue applications, Biomacromolecules, 2022. https://doi.org/10.1021/acs.biomac.2c01166

  52. Yang, F., Shi, K., Hao, Y., et al., Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner, Bioact. Mater., 2021, vol. 6, no. 10, pp. 3036–3048. https://doi.org/10.1016/j.bioactmat.2021.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yin, X. Hewitt, D.R., et al., Hierarchical assembly in PLA−PEO−PLA hydrogels with crystalline domains and effect of block stereochemistry, Colloids Surf., B, 2019, vol. 180, pp. 102–109. https://doi.org/10.1016/j.colsurfb.2019.04.031

    Article  CAS  Google Scholar 

  54. Zhao, J. **ong, J., et al., A triple crosslinked micelle-hydrogel lacrimal implant for localized and prolonged therapy of glaucoma, Eur. J. Pharm. Biopharm., 2023, vol. 185, pp. 44–54. https://doi.org/10.1016/j.ejpb.2023.02.011

    Article  CAS  PubMed  Google Scholar 

  55. Agrawal, S.K., Sanabria-Delong, N., et al., Structural characterization of PLA−PEO−PLA solutions and hydrogels: Crystalline vs amorphous PLA domains, Macromolecules, 2008, vol. 41, no. 5, pp. 1774–1784. https://doi.org/10.1021/ma070634r

    Article  CAS  Google Scholar 

  56. Mao, H. Pan, P., et al., In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers, J. Phys. Chem., 2015, vol. 119, no. 21, pp. 6471–6480. https://doi.org/10.1021/acs.jpcb.5b03610

    Article  CAS  Google Scholar 

  57. Yang. F., Shi, K., et al., A biodegradable thermosensitive hydrogel vaccine for cancer immunotherapy, Applied Materials Today, 2020, vol. 19, p. 100608. https://doi.org/10.1016/j.apmt.2020.100608

    Article  Google Scholar 

  58. Zagoskin, Y.D., Grigoriev, T.E., Krasheninnikov, S.V., et al., Hydrogels and sponge materials based on triblock copolymers of lactide and ethylene glycol, Dokl. Chem., 2019, vol. 486, no. 2, pp. 149–151. https://doi.org/10.1134/S001250081906003X

    Article  CAS  Google Scholar 

  59. Gholizadeh, H., Landh, E., Silva, D.M., et al., In vitro and in vivo applications of a universal and synthetic thermo-responsive drug delivery hydrogel platform, Int. J. Pharm., 2023, vol. 635, p. 122777. https://doi.org/10.1016/j.ijpharm.2023.122777

    Article  CAS  PubMed  Google Scholar 

  60. Chen, S. Pieberb, R., et al., Triblock copolymers: Synthesis, characterization, and delivery of a model protein, Int. J. Pharm., 2005, vol. 288, no. 2, pp. 207–218. https://doi.org/10.1016/j.ijpharm.2004.09.026

    Article  CAS  PubMed  Google Scholar 

  61. Qiao, M. Chen, D., et al., Injectable biodegradable temperature-responsive PLGA−PEG−PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels, Int. J. Pharm., 2005, vol. 294, nos. 1–2, pp. 103–112. https://doi.org/10.1016/j.ijpharm.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  62. Yu, L. Xu, W., et al., Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection, Acta Biomater., 2014, vol. 10, no. 3, pp. 1251–1258. https://doi.org/10.1016/j.actbio.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  63. Chen, L., Ci, T., Li, T., et al., Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced sol−gel transition in water, Macromolecules, 2014, vol. 47, no. 17, pp. 5895–5903. https://doi.org/10.1021/ma501110p

    Article  CAS  Google Scholar 

  64. Chen, L., Ci, T., Yu, L., et al., Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA−PEG−PLGA copolymer aqueous solutions, Macromolecules, 2015, vol. 48, no. 11, pp. 3662–3671. https://doi.org/10.1021/acs.macromol.5b00168

    Article  CAS  Google Scholar 

  65. Zhou, Y., Cui, Y., and Wang, L.Q., A dual-sensitive hydrogel based on poly(lactide-co-glycolide)-polyethylene glycol-poly(lactide-co-glycolide) block copolymers for 3D printing, Int. J. Bioprint., 2021, vol. 7, no. 3, pp. 140–152. https://doi.org/10.18063/ijb.v7i3.389

    Article  CAS  Google Scholar 

  66. Zentner, G., Rathi, R., Shih, C., et al., Biodegradable block copolymers for delivery of proteins and water-insoluble drugs, J. Controlled Release, 2001, vol. 72, nos. 1–3, pp. 203–215. https://doi.org/10.1016/S0168-3659(01)00276-0

    Article  CAS  Google Scholar 

  67. Ghahremankhani, A., Dorkoosh, F., and Dinarvand, R., PLGA−PEG−PLGA tri-block copolymers as in situ gel-forming peptide delivery system: Effect of formulation properties on peptide release, Pharm. Dev. Technol., 2008, vol. 13, no. 1, pp. 49–55. https://doi.org/10.1080/10837450701702842

    Article  CAS  PubMed  Google Scholar 

  68. Khodaverdi, E. Tekie, F., et al., Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA−PEG−PLGA, AAPS PharmSciTech, 2012, vol. 13, pp. 590–600. https://doi.org/10.1208/s12249-012-9781-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jeong, B., Bae, Y.H., and Kim, S.W., Thermoreversible gelation of PEG−PLGA−PEG triblock copolymer aqueous solutions, Macromolecules, 1999, vol. 32, no. 21, pp. 7064–7069. https://doi.org/10.1021/ma9908999

    Article  CAS  Google Scholar 

  70. Jeong, B., Lee, K.M., Gutowska, A., and An, Y.H., Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering, Biomacromolecules, 2002, vol. 3, no. 4, pp. 865–868. https://doi.org/10.1021/bm025536m

    Article  CAS  PubMed  Google Scholar 

  71. Chung, Y-M., Simmons, K.L., Gutowska, A., and Jeong, B., Sol−gel transition temperature of PLGA-g-PEG aqueous solutions, Biomacromolecules, 2002, vol. 3, no. 3, pp. 511–516. https://doi.org/10.1021/bm0156431

    Article  CAS  PubMed  Google Scholar 

  72. Lee, S.J., Han, B.R., Park, S.Y., et al., Sol–gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA–PEG block copolymer aqueous solution, J. Polym. Sci., Part A: Polym. Chem., 2006, vol. 44, no. 2, pp. 888–899. https://doi.org/10.1002/pola.21193

    Article  CAS  Google Scholar 

  73. Shi, J., Yu, L., and Ding, J., PEG-based thermosensitive and biodegradable hydrogels, Acta Biomater., 2021, vol. 128, pp. 42–59. https://doi.org/10.1016/j.actbio.2021.04.009

    Article  CAS  PubMed  Google Scholar 

  74. Cui, S., Yu, L., and Ding, J., Semi-bald micelles and corresponding percolated micelle networks of thermogels, Macromolecules, 2018, vol. 51, no. 16, pp. 6405–6420. https://doi.org/10.1021/acs.macromol.8b01014

    Article  CAS  Google Scholar 

  75. Lopez-Cano, J.J., Sigen, A., Andres-Guerrero, V., et al., Thermo-responsive PLGA−PEG−PLGA hydrogels as novel injectable platforms for neuroprotective combined therapies in the treatment of retinal degenerative diseases, Pharmaceutics, 2021, vol. 13, no. 2, p. 234. https://doi.org/10.3390/pharmaceutics13020234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wei, P-S., Chen, Y.J., Lin, S.Y., et al., In situ subcutaneously injectable thermosensitive PEG−PLGA diblock and PLGA−PEG−PLGA triblock copolymer composite as sustained delivery of bispecific anti-CD3 scFv T-cell/anti-EGFR Fab Engager (BiTEE), Biomaterials, 2021, vol. 278, p. 121166. https://doi.org/10.1016/j.biomaterials.2021.121166

    Article  CAS  PubMed  Google Scholar 

  77. Cespi, M., Bonacucina, G., Tiboni, M., et al., Insights in the rheological properties of PLGA−PEG−PLGA aqueous dispersions: Structural properties and temperature-dependent behavior, Polymer, 2021, vol. 213, p. 123216. https://doi.org/10.1016/j.polymer.2020.123216

    Article  CAS  Google Scholar 

  78. Kamali, H., Khodaverdi, E., Hadizadeh, F., et al., Comparison of in-situ forming composite using PLGA−PEG−PLGA with in-situ forming implant using plga: in-vitro, ex-vivo, and in-vivo evaluation of naltrexone release, J. Drug Delivery Sci. Technol., 2019, vol. 50, pp. 188–200. https://doi.org/10.1016/j.jddst.2019.01.011

    Article  CAS  Google Scholar 

  79. Chen, X. Wang, H., et al., An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis, Biomaterials, 2023, vol. 298, p. 122139. https://doi.org/10.1016/j.biomaterials.2023.122139

    Article  CAS  PubMed  Google Scholar 

  80. Steinman, N.Y. Haim-Zada, M., et al., Effect of PLGA block molecular weight on gelling temperature of PLGA−PEG−PLGA thermoresponsive copolymers, J. Polym. Sci., Part A: Polym. Chem., 2019, vol. 57, no. 1, pp. 35–39. https://doi.org/10.1002/pola.29275

    Article  CAS  Google Scholar 

  81. Cao, D., Guo, W., Cai, C., et al., Unified therapeutic-prophylactic vaccine demonstrated with a postoperative filler gel to prevent tumor recurrence and metastasis, Adv. Funct. Mater., 2022, vol. 32, no. 40, p. 2206084. https://doi.org/10.1002/adfm.202206084

    Article  CAS  Google Scholar 

  82. Vojtova, L., Michlovska, L., Valova, K., et al., The effect of the thermosensitive biodegradable PLGA−PEG−PLGA copolymer on the rheological, structural and mechanical properties of thixotropic self-hardening tricalcium phosphate cement, Int. J. Mol. Sci., 2019, vol. 20, no. 2, p. 391. https://doi.org/10.3390/ijms20020391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yuan, B., Zhang, Y., Wang, Q., et al., Thermosensitive vancomycin@PLGA−PEG−PLGA/HA hydrogel as an all-in-one treatment for osteomyelitis, Int. J. Pharm., 2022, vol. 627, p. 122225. https://doi.org/10.1016/j.ijpharm.2022.122225

    Article  CAS  PubMed  Google Scholar 

  84. Gao, Y., Ji, H., Peng, L., et al., Development of PLGA−PEG−PLGA hydrogel delivery system for enhanced immunoreaction and efficacy of newcastle disease virus DNA vaccine, Molecules, 2020, vol. 25, no. 11, p. 2505. https://doi.org/10.3390/molecules25112505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Maeda, T., Tanimoto, K., and Hotta, A., Thermogelling nanocomposite hydrogel: PLGA molecular weight in PLGA−b−PEG−b-PLGA affecting the thermogelling behavior, Macromol. Chem. Phys., 2022, vol. 223, no. 1, p. 2100316. https://doi.org/10.1002/macp.202100316

    Article  CAS  Google Scholar 

  86. Khorshid, N.K., Zhu, K., Knudsen, K.D., et al., Novel structural changes during temperature-induced self-assembling and gelation of PLGA−PEG−PLGA triblock copolymer in aqueous solutions, Macromol. Biosci., 2016, vol. 16, no. 12, pp. 1838–1852. https://doi.org/10.1002/mabi.201600277

    Article  CAS  PubMed  Google Scholar 

  87. Rahmani, F., Atabaki, R., Behrouzi, S., et al., The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery, Int. J. Pharm., 2023, vol. 631, p. 122484. https://doi.org/10.1016/j.ijpharm.2022.122484

    Article  CAS  PubMed  Google Scholar 

  88. **, X., Fu, Q., Gu, Z., et al., Injectable corilagin/low molecular weight chitosan/PLGA−PEG−PLGA thermosensitive hydrogels for localized cancer therapy and promoting drug infiltration by modulation of tumor microenvironment, Int. J. Pharm., 2020, vol. 589, p. 119772. https://doi.org/10.1016/j.ijpharm.2020.119772

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, L., Shen, W., Luan, J., et al., Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel, Acta Biomater., 2015, vol. 23, pp. 271–281. https://doi.org/10.1016/j.actbio.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  90. Osorno, L.L., Maldonado, D.E., Whitener, R.J., et al., Amphiphilic PLGA−PEG−PLGA triblock copolymer nanogels varying in gelation temperature and modulus for the extended and controlled release of hyaluronic acid, J. Appl. Polym. Sci., 2019, vol. 137, no. 25, p. 48678. https://doi.org/10.1002/app.48678

    Article  CAS  Google Scholar 

  91. Chen, X., Chen, J., Li, B., et al., PLGA−PEG−PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment, J. Colloid Interface Sci., 2017, vol. 490, pp. 542–552. https://doi.org/10.1016/j.jcis.2016.11.089

    Article  CAS  PubMed  Google Scholar 

  92. Cao, D., Zhang, X., Akabar, M., et al., Liposomal doxorubicin loaded PLGA−PEG−PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer, Artif. Cells, Nanomed., Biotechnol., 2019, vol. 47, no. 1, pp. 181–191. https://doi.org/10.1080/21691401.2018.1548470

    Article  CAS  PubMed  Google Scholar 

  93. Wang, P., Zhuo, X., Chu, W., and Tang, X., Exenatide-loaded microsphere/thermosensitive hydrogel long-acting delivery system with high drug bioactivity, Int. J. Pharm., 2017, vol. 528, nos. 1–2, pp. 62–75. https://doi.org/10.1016/j.ijpharm.2017.05.069

    Article  CAS  PubMed  Google Scholar 

  94. Yan, Q., **ao, L.Q., Tan, L., et al., Controlled release of simvastatin-loaded thermo-sensitive PLGA−PEG−PLGA hydrogel for bone tissue regeneration: In vitro and in vivo characteristics, J. Biomed. Mater. Res., 2015, vol. 103, no. 11, pp. 3580–3589. https://doi.org/10.1002/jbm.a.35499

    Article  CAS  Google Scholar 

  95. Rong, X., Ji, Y., Zhu, X., et al., Neuroprotective effect of insulin-loaded chitosan nanoparticles/PLGA−PEG−PLGA hydrogel on diabetic retinopathy in rats, Int. J. Nanomed., 2019, vol. 14, pp. 45–55. https://doi.org/10.2147/IJN.S184574

    Article  CAS  Google Scholar 

Download references

Funding

This wirk was supported by Petrovskii Russian Scientific Center of Surgery (project no. 769-EA-NIR of June 26, 2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Zagoskin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomina, Y.S., Semkina, A.S., Zagoskin, Y.D. et al. Biocompatible Hydrogels Based on Biodegradable Polyesters and Their Copolymers. Colloid J 85, 795–816 (2023). https://doi.org/10.1134/S1061933X23600756

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600756

Keywords:

Navigation