Log in

Silver-Containing Bicomponent Nanoparticles: Relationship between Morphology and Electrokinetic Potential

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The chemical compositions, structures, and electrokinetic potentials have been studied for silver-containing Janus-type ZnO/Ag nanoparticles, heterophase Cu/Ag nanoparticles with a uniform distribution of the components over a particle, and silver-decorated TiO2 nanoparticles. The nanoparticles have been obtained by the simultaneous electric explosion of two wires. The influence of nanoparticle surface structure on the isoelectric point position and electrokinetic potential values has been analyzed. The effect of silver localization on the electrokinetic characteristics of nanoparticles has been investigated. These characteristics have been compared with those of mechanical mixtures having the same mass ratios of the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Murray, C.J., Ikuta, K.S., Sharara, F., et al., Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis, Lancet, 2022, vol. 399, p. 629. https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  CAS  Google Scholar 

  2. Frei, A., Verderosa, A.D., Elliott, A.G., et al., Metals to combat antimicrobial resistance, Nat. Rev. Chem., 2023, vol. 7, p. 202. https://doi.org/10.1038/s41570-023-00463-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arora, N., Thangavelu, K., and Karanikolos, G.N., Bimetallic nanoparticles for antimicrobial applications, Front. Chem., 2020, vol. 8, p. 412. https://doi.org/10.3389/fchem.2020.00412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Padilla-Cruz, A.L., Garza-Cervantes, J.A., Vasto-Anzaldo, X.G., et al., Synthesis and design of Ag–Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens, Sci. Rep., 2021, vol. 11, no. 1, p. 1. https://doi.org/10.1038/s41598-021-84768-8

    Article  CAS  Google Scholar 

  5. Akter, M., Sikder, M.T., Rahman, M.M., et al., A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives, J. Adv. Res., 2017, vol. 2, no. 9, p. 1. https://doi.org/10.1016/j.jare.2017.10.008

    Article  CAS  Google Scholar 

  6. Chen, M., Shou, Z., **, X., et al., Emerging strategies in nanotechnology to treat respiratory tract infections: Realizing current trends for future clinical perspectives, Drug Delivery, 2022, vol. 29, no. 1, p. 2442. https://doi.org/10.1080/10717544.2022.2089294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferrando, R., Jellinek, J., and Johnston, R.L., Nanoalloys: From theory to applicalions of alloy clusters and nanoparticles, Chem. Rev., 2008, vol. 108, no. 3, p. 845. https://doi.org/10.1021/cr040090g

    Article  CAS  PubMed  Google Scholar 

  8. Nasrabadi, H.T., Abbasi, E., Davaran, S., et al., Bimetallic nanoparticles: Preparation, properties, and biomedical applications, Artif. Cells, Nanomed., Biotechnol., 2016, vol. 44, no. 1, p. 376. https://doi.org/10.3109/21691401.2014.953632

    Article  CAS  PubMed  Google Scholar 

  9. Belenov, S.V., Volochaev, V.A., Pryadchenko, V.V., et al., Phase behavior of Pt−Cu nanoparticles with different architecture upon their thermal treatment, Nanotechnol. Russ., 2017, vol. 12, p. 147. https://doi.org/10.1134/S1995078017020033

    Article  CAS  Google Scholar 

  10. Banerjee, M., Sharma, S., Chattopadhyay, A., et al., Enhanced antibacterial activity of bimetallic gold−silver core-shell nanoparticles at low silver concentration, Nanoscale, 2011, vol. 3, no. 12, p. 5120. https://doi.org/10.1039/C1NR10703H

    Article  CAS  PubMed  Google Scholar 

  11. Alonso, A., Vigués, N., Munoz-Berbel, X., et al., Activity-tunable nanocomposites based on dissolution and in situ recrystallization of nanoparticles on ion exchange resins, RSC Advances, 2015, vol. 5, no. 109, p. 89971. https://doi.org/10.1039/C5RA16081B

  12. Ferreira, L., Guedes, J.F., Almeida-Aguiar, C., et al., Microbial growth inhibition caused by Zn/Ag−Y zeolite materials with different amounts of silver, Colloids Surf. B, 2016, vol. 142, p. 141. https://doi.org/10.1016/j.colsurfb.2016.02.042

    Article  CAS  Google Scholar 

  13. Markova, Z., Šišková, K.M., Filip, J., et al., Air stable magnetic bimetallic Fe−Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal, Environ. Sci. Technol., 2013, vol. 47, no. 10, p. 5285. https://doi.org/10.1021/es304693g

    Article  CAS  PubMed  Google Scholar 

  14. Taner, M., Sayar, N., Yulug, I.G., et al., Synthesis, characterization and antibacterial investigation of silver−copper nanoalloys, J. Mater. Chem., 2011, vol. 21, no. 35, p. 13150. https://doi.org/10.1039/C1JM11718A

    Article  CAS  Google Scholar 

  15. Gupta, A., Mumtaz, S., Li, C.H., et al., Combatting antibiotic-resistant bacteria using nanomaterials, Chem. Soc. Rev., 2019, vol. 48, no. 2, p. 415. https://doi.org/10.1039/C7CS00748E

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rajchakit, U. and Saro**i, V., Recent developments in antimicrobial-peptide-conjugated gold nanoparticles, Bioconjugate Chem., 2017, vol. 28, no. 11, p. 2673. https://doi.org/10.1021/acs.bioconjchem.7b00368

    Article  CAS  Google Scholar 

  17. Bukina, Yu.A. and Sergeeva, E.A., Antibacterial properties and mechanism of bactericidal action of silver nanoparticles and ions, Vestn. Kazan. Tekhnol. Univ., 2012, vol. 15, no. 14, p. 170.

    Google Scholar 

  18. Pillai, P., Kowalczyk, P.B., Kandere-Grzybowska, K., et al., Engineering gram selectivity of mixed-charge gold nanoparticles by tuning the balance of surface charges, Angew. Chem., Int. Ed., 2016, vol. 55, no. 30, p. 8610. https://doi.org/10.1002/anie.201602965

    Article  CAS  Google Scholar 

  19. Huo, S., Jiang, Y., Gupta, A., et al., Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure, ACS Nano, 2016, vol. 10, no. 9, p. 8732. https://doi.org/10.1021/acsnano.6b04207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krishnan, G., de Graaf, S., Gert, H., et al., Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles, Nanoscale, 2017, vol. 9, no. 24, p. 8149. https://doi.org/10.1039/C7NR00916J

    Article  CAS  PubMed  Google Scholar 

  21. Langlois, C., Li, Z.I., Yuan, J., et al., Transition from core−shell to Janus chemical configuration for bimetallic nanoparticles, Nanoscale, 2012, vol. 4, no. 11, p. 3381. https://doi.org/10.1039/C2NR11954D

    Article  CAS  PubMed  Google Scholar 

  22. Bakina, O.V., Glazkova, E.A., Svarovskaya, N.V., et al., “Janus”-like Cu–Fe bimetallic nanoparticles with high antibacterial activity, Mater. Lett., 2019, vol. 242, p. 187. https://doi.org/10.1016/j.matlet.2019.01.105

    Article  CAS  Google Scholar 

  23. Lozhkomoev, A.S., Kazantsev, S.O., Kondrano-va, A.M., et al., Design of antimicrobial composite nanoparticles ZnxMe (100–x)/O by electrical explosion of two wires in the oxygen-containing atmosphere, Mater. Des., 2019, vol. 183, p. 108099. https://doi.org/10.1016/j.matdes.2019.108099

    Article  CAS  Google Scholar 

  24. Bakina, O.V., Glazkova, E.A., Pervikov, A.V., et al., Electric explosion of wires as versatile method for antibacterial Janus-like ZnO–Ag nanoparticles preparation, J. Mater. Sci.: Mater. Electron., 2021, vol. 32, p. 10623. https://doi.org/10.1007/s10854-021-05718-8

    CAS  Google Scholar 

  25. Bakina, O., Glazkova, E., Pervikov, A., et al., Design and preparation of silver−copper nanoalloys for antibacterial applications, Journal of Cluster Science, 2021, vol. 32, p. 779. https://doi.org/10.1007/s10876-020-01844-1

    Article  CAS  Google Scholar 

  26. Chace, W.G., Exploding wires, Phys. Today, 1964, vol. 17, no. 8, p. 19. https://doi.org/10.1063/1.3051737

    Article  Google Scholar 

  27. Kuznetsova, A.S., Ermakova, L.E., Antropova, T.V., et al., Chemical composition, structure, and electrokinetic potential of nickel- and iron-containing vitreous materials, Colloid J., 2021, vol. 83, no. 3, p. 335. https://doi.org/10.1134/S1061933X21030108

    Article  CAS  Google Scholar 

  28. Balouiri, M., Sadiki, M., and Ibnsouda, S.K., Methods for in vitro evaluating antimicrobial activity: A review, J. Pharm. Anal., 2016, vol. 6, no. 2, p. 71. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  29. Lerner, M.I., Svarovskaya, N.V., Psakhie, S.G., et al., Production technology, characteristics, and some applications of electric-explosion nanopowders of metals, Nanotechnol. Russ., 2009, vol. 4, nos. 11–12, p. 741. https://doi.org/10.1088/09574484/27/20/205603

    Article  Google Scholar 

  30. Diagrammy sostoyaniya dvoinykh metallicheskikh system (Diagrams of the State of Binary Metallic Systems), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

  31. Chudnenko, K.V. and Pal’yanova, G.A., Thermodynamic properties of solid solutions in the Ag–Au–Cu system, Geol. Geofiz., 2014, vol. 55, no. 3, p. 449.

    CAS  Google Scholar 

  32. Liu, X., Wu, Y., **e, G., et al., New green soft chemistry route to Ag–Cu bimetallic nanomaterials, Int. J. Electrochem. Sci., 2017, vol. 12, p. 3275. https://doi.org/10.20964/2017.04.61

    Article  CAS  Google Scholar 

  33. Williamson, G.K. and Hall, W.H., X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1953, vol. 1, no. 1, p. 22. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  34. Kushwah, M., Gaur, M.S., Berlina, A.N., et al., Biosynthesis of novel Ag@Cu alloy NPs for enhancement of methylene blue photocatalytic activity and antibacterial activity, Mater. Res. Express, 2019, vol. 6, no. 11, p. 116561. https://doi.org/10.1088/2053-1591/ab485e

    Article  CAS  Google Scholar 

  35. Ni, Z., Wan, M., Tang, G., et al., Synthesis of CuO and PAA-regulated silver-carried CuO nanosheet composites and their antibacterial properties, Polymers, 2022, vol. 14, no. 24, p. 5422. https://doi.org/10.3390/polym14245422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaushik, V.K., XPS core level spectra and auger parameters for some silver compounds, J. Electron Spectrosc. Relat. Phenom., 1991, vol. 56, no. 3, p. 273. https://doi.org/10.1016/0368-2048(91)85008-H

    Article  CAS  Google Scholar 

  37. Rajendran, R. and Mani, A., Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles, J. Saudi Chem. Soc., 2020, vol. 24, no. 12, p. 1010. https://doi.org/10.1016/j.jscs.2020.10.008

    Article  CAS  Google Scholar 

  38. Parvin, T., Keerthiraj, N., Ibrahim, I.A., et al., Photocatalytic degradation of municipal wastewater and brilliant blue dye using hydrothermally synthesized surface-modified silver-doped ZnO designer particles, Int. J. Photoenergy, 2012, vol. 2012, p. 670610. https://doi.org/10.1155/2012/670610

    Article  CAS  Google Scholar 

  39. Chan, Y.Y., Pang, Y.L., Lim, S., et al., Biosynthesized Fe-and Ag-doped ZnO nanoparticles using aqueous extract of Clitoria ternatea Linn for enhancement of sonocatalytic degradation of Congo red, Environ. Sci. Pollut. Res., 2020, vol. 27, p. 34675. https://doi.org/10.1007/s11356-019-06583-z

    Article  CAS  Google Scholar 

  40. Azouri, A., Ge, M., Xun, K., et al., Zeta potential studies of titanium dioxide and silver nanoparticle composites in water-based colloidal suspension, Multifunctional Nanocomposites and Nanomaterials International Conference, 2008, vol. 47616, p. 221. https://doi.org/10.1115/MN2006-17072

  41. Ren, Y., Wang, C., Chen, Z., et al., Emergent heterogeneous microenvironments in biofilms: Substratum surface heterogeneity and bacterial adhesion force-sensing, FEMS Microbiol. Rev., 2018, vol. 42, no. 3, p. 259. https://doi.org/10.1093/femsre/fuy001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out within the framework of the state order to the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, FWRW-2021-0007. The synthesis and study of TiO2/Ag nanoparticles were supported by the Russian Science Foundation, project no. 21-13-00498.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Bakina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, M.I., Bakina, O.V., Kazantsev, S.O. et al. Silver-Containing Bicomponent Nanoparticles: Relationship between Morphology and Electrokinetic Potential. Colloid J 85, 520–530 (2023). https://doi.org/10.1134/S1061933X23600422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600422

Navigation