Log in

Barker Code Thermography Inspection and Reliability Evaluation for CFRP Defects Detection

  • THERMAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

In this paper, Barker code thermography is used to detect delamination defects incarbon fiber reinforced polymer (CFRP). Detection capability of this imaging technique is assessed through quantitative analysis of the signal-to-noise ratio (SNR) in the acquired feature images. An infrared thermography experimental system has been developed to implement the Barker code modulation for pulse compression excitation signals. A reference CFRP specimen with different diameter-to-depth ratio defects was tested. Three thermal wave imaging algorithms, namely principal component analysis (PCA), fitting correlation coefficient (FCC) and total harmonic distortion (THD), have been applied to process the acquired infrared images sequences, and determine SNR values characterizing the processing results. The experimental results show that Barker code thermography has the advantages of simple modulation and easy implementation. Also, the PCA algorithm outperforms the techniques of FCC and THD in terms of the SNR to enable effective identification defects in CFRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Sebaey, T.A., Kumar Rajak, D., and Mehboob, H., Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications, Compos. Struct., 2021, vol. 255, p. 112910.

    Article  CAS  Google Scholar 

  2. Goh, G.D., Dikshit, V., Nagalingam, A.P., et al., Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics, Mater. Des., 2018, vol. 137, pp. 79–89.

    Article  CAS  Google Scholar 

  3. Wang, F., Liu, J., Liu, L., et al., Quantitative non-destructive evaluation of CFRP delamination defect using laser induced chirp-pulsed radar photothermal tomography, Opt. Lasers Eng., 2022, vol. 149, p. 106830.

    Article  Google Scholar 

  4. Zhang, X., He, Y., Chady, T., et al., CFRP impact damage inspection based on manifold learning using ultrasonic induced thermography, IEEE Trans. Indr. Inf., 2019, vol. 15, no. 5, pp. 2648–2659.

    Article  Google Scholar 

  5. Moskovchenko, A., Vavilov, V., Bernegger, R., et al., Detecting delaminations in semitransparent glass fiber composite by using pulsed infrared thermography, J. Nondestr. Eval., 2020, vol. 39, no. 3, p. 57–61.

    Article  Google Scholar 

  6. Schwedersky, Bernardo, B., et al., Impact damage characterization in CFRP samples with self-organizing maps applied to lock-in thermography and square-pulse shearography images, Expert Syst. Appl., 2022, vol. 192, p. 116297.

    Article  Google Scholar 

  7. Maldague, X., Galmiche, F., and Ziadi, A., Advances in pulsed phase thermography, Infrared Phys. Technol., 2002, vol. 43, no. 5, pp. 175–181.

    Article  Google Scholar 

  8. Tabatabaei, N. and Mandelis, A., Thermal coherence tomography using match filter binary phase coded diffusion waves, Phys. Rev. Lett., 2011, vol. 107, pp. 1–5.

    Article  Google Scholar 

  9. Ghali, V.S., Jonnalagadda, N., and Mulaveesala, R., Three-dimensional pulse compression for infrared nondestructive testing, IEEE Sens. J., 2009, vol. 9, pp. 832–833.

    Article  Google Scholar 

  10. Gong, J., Liu, J., Qin, L., and Wang, Y., Investigation of carbon fiber reinforced polymer (CFRP) sheet with subsurface defects inspection using thermal-wave radar imaging (TWRI) based on the multi-transform technique, NDT & E Int., 2014, vol. 62, pp. 130–136.

    Article  CAS  Google Scholar 

  11. Yang, R. and He, Y., Pulsed inductive thermal wave radar (PI-TWR) using cross correlation matched filtering in eddy current thermography, Infrared Phys. Technol., 2015, vol. 71, pp. 469–474.

    Article  CAS  Google Scholar 

  12. Silipigni, G., Burrascano, P., Hutchins, D.A., et al., Optimization of the pulse-compression technique applied to the infrared thermography nondestructive evaluation, NDT & E Int., 2017, vol. 87, pp. 100–110.

    Article  Google Scholar 

  13. Mulaveesala, R. and Tuli, S., Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection, Appl. Phys. Lett., 2006, vol. 89(19), p. 191913.

    Article  Google Scholar 

  14. Mulaveesala, R. and Venkata, G.S., Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics, Rev. Sci. Instrum., 2011, vol. 82, no. 5, p. 054902.

    Article  Google Scholar 

  15. Mulaveesala, R. and Arora, V., Complementary coded thermal wave imaging scheme for thermal non-destructive testing and evaluation, Quant. InfraRed Thermogr. J., 2017, vol. 14, no. 1, pp. 44–53.

    Article  Google Scholar 

  16. Shi, Q., Liu, J., Liu, W., et al., Barker-coded modulation laser thermography for CFRP laminates delamination detection, Infrared Phys. Technol., 2019, vol. 98, pp. 55–61.

    Article  CAS  Google Scholar 

  17. Bu, C., Li, R., Liu, T., et al., Micro-crack defects detection of semiconductor Si-wafers based on Barker code laser infrared thermography, Infrared Phys. Technol., 2022, vol. 123, p. 104160.

    Article  CAS  Google Scholar 

  18. Ahmad, J., Akula, A., Mulaveesala, R., et al., Defect detection capabilities of independent component analysis for Barker coded thermal wave imaging, Infrared Phys. Technol., 2020, vol. 104, p. 103118.

    Article  Google Scholar 

  19. Wang, F., Wang, Y., Liu, J., et al., Optical excitation fractional Fourier transform (FrFT) based enhanced thermal-wave radar imaging (TWRI), Opt. Express, 2018, vol. 26(17), p. 21403.

    Article  CAS  Google Scholar 

  20. Gong, J., Zheng, Y., and Liu, J., A study on the SNR performance analysis of laser-generated bidirectional thermal wave radar imaging inspection for hybrid C/GFRP laminate defects, Infrared Phys. Technol., 2020, vol. 111, no. 7, p. 103526.

    Article  CAS  Google Scholar 

  21. Bu, C., Li, R., Liu, T., et al., Micro-crack defects detection of semiconductor Si-wafers based on Barker code laser infrared thermography, Infrared Phys. Technol., 2022, vol. 123, p. 104160.

    Article  CAS  Google Scholar 

  22. Rajic, N., Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures, Compos. Struct., 2002, vol. 58, pp. 521–528.

    Article  Google Scholar 

  23. Bu, C.W., Liu, G.Z., Zhang, X.B., et al., Debonding defects detection of FMLs based on long pulsed infrared thermography technique, Infrared Phys. Technol., 2020, vol. 104, p. 103074-1–103074-7.

    Article  CAS  Google Scholar 

  24. D'Accardi, E., Palumbo, D., Tamborrino, R., et al., A quantitative comparison among different algorithms for defects detection on aluminum with the pulsed thermography technique, Metals, 2018, vol. 8, no. 10, p. 859.

    Article  CAS  Google Scholar 

  25. Zhang, H., Sfarra, S., Sarasini, F., et al., Optical and mechanical excitation thermography for impact response in basalt-carbon hybrid fiber-reinforced composite laminates, IEEE Trans. Ind. Inf., 2018, vol. 14, no. 2, pp. 514–522.

    Article  Google Scholar 

Download references

Funding

This project is supported by Heilongjiang Province Natural Science Fund (grant no. LH2021E088).

Author information

Authors and Affiliations

Authors

Contributions

Chiwu Bu: Conceptualization, methodology, writing—review and editing, supervision, project administration. Tao Liu: methodology, software, data collection, validation, investigation, writing—original draft preparation. Bo Zhao: methodology, software, investigation. Rui Li: methodology, data collection, validation.

Corresponding author

Correspondence to Tao Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, C., Liu, T., Zhao, B. et al. Barker Code Thermography Inspection and Reliability Evaluation for CFRP Defects Detection. Russ J Nondestruct Test 59, 1083–1092 (2023). https://doi.org/10.1134/S1061830923600545

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830923600545

Keywords:

Navigation