Log in

Estimation of Defect Depth in Carbon Fibre Reinforced Polymer Using Frequency Modulated Thermal Wave Imaging: An Analytical Study

  • THERMAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Frequency modulated thermal wave imaging (FMTWI) is an efficient and affective thermal nondestructive testing and evaluation (NDT&E) technique for qualitative and quantitative analysis for defects in test materials. FMTWI utilizes low peak power heat sources modulated within a frequency sweep to excite the material under test. The paper demonstrates a novel analytical approach for heat diffusion in isotropic material using FMTWI technique to distinguish defects located at different depths inside the test sample. The frequency modulated thermal excitation has been illuminated over carbon fibre reinforced polymer (CFRP) material to compute thermal response over the object under test. The mapped temperature response is analysed further for defect detectability in terms of correlation coefficient and time delay. Further, the presented analytical approach for defects located at different depths are comparted with the simulation model of CFRP test material. Lastly, different frequency and time domain data analysis schemes have been applied to detect defects in terms of thermal contrast. Results demonstrates the detection capability of FMTWI technique using correlation based matched filter method to provide better test resolution and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Maldague, X.P.V., Theory and Practice of Infrared Thermography for Nondestructive Testing, New York: Wiley, 2001.

    Google Scholar 

  2. Maldague, X.P.V., Introduction to NDT by active infrared thermography, Mater. Eval., 2002, vol. 60, no. 9, pp. 1060–1073.

    Google Scholar 

  3. Vavilov, V.P., Thermal nondestructive testing of materials and products: A review, Russ. J. Nondestr. Test., 2017, vol. 53, no. 10, pp. 707–730.

    Article  Google Scholar 

  4. Yang, R. and He, Y., Optically and non-optically excited thermography for composites: A review, Infrared Phys. Technol., 2016, vol. 75, pp. 26–50.

    Article  CAS  Google Scholar 

  5. Avdelidis, N.P. and Moropoulou, A., Applications of infrared thermography for the investigation of historic structures, J. Cult. Heritage, 2004, vol. 5, no. 1, pp. 119–127.

    Article  Google Scholar 

  6. Ciampa, F., Mahmoodi, P., Pinto, F., and Meo, M., Recent advances in active infrared thermography for nondestructive testing of aerospace components, Sensors (Switzerland), 2018, vol. 18, no. 2, p. 609.

  7. Gholizadeh, S., A review of nondestructive testing methods of composite materials, Procedia Struct. Integr., 2016, vol. 1, pp. 50–57.

    Article  Google Scholar 

  8. Vavilov, V.P. and Burleigh, D.D., Review of pulsed thermal NDT: Physical principles, theory and data processing, NDT & E Int., 2015, vol. 73, pp. 28–52.

    Article  Google Scholar 

  9. Sun, J.G., Analysis of pulsed thermography methods for detect depth prediction, J. Heat Transfer, 2006, vol. 128, no. 4, pp. 329–338.

    Article  Google Scholar 

  10. Wang, Z., Tian, G., Meo, M., and Ciampa, F., Image processing based quantitative damage evaluation in composites with long pulse thermography, NDT & E Int., 2018, vol. 99, pp. 93–104.

    Article  Google Scholar 

  11. Giorleo, G. and Meola, C., Comparison between pulsed and modulated thermography in glass-epoxy laminates, NDT & E Int., 2002, vol. 35, no. 5, pp. 287–292.

    Article  CAS  Google Scholar 

  12. Maldague, X., Galmiche, F., and Ziadi, A., Advances in pulsed phase thermography, Infrared Phys. Technol., 2002, vol. 43, nos. 3–5, pp. 175–181.

    Article  Google Scholar 

  13. Busse, G., Optoacoustic phase angle measurement for probing a metal, Appl. Phys. Lett., 1979, vol. 35, no. 10, pp. 759–760.

    Article  CAS  Google Scholar 

  14. Maldague, X.P.V. and Marinetti, S., Pulse phase infrared thermography, J. Appl. Phys., 1996, vol. 79, no. 5, pp. 2694–2698.

    Article  CAS  Google Scholar 

  15. Busse, G., Wu, D., and Karpen, W., Thermal wave imaging with phase sensitive modulated thermography, J. Appl. Phys., 1992, vol. 71, pp. 3962–3965.

    Article  CAS  Google Scholar 

  16. Wu, D. and Busse, G., Lock-in thermography for nondestructive evaluation of materials, Rev. Gen. Therm., 1998, vol. 37, no. 8, pp. 693–703.

    Article  CAS  Google Scholar 

  17. Pitarresi, G., Lock-in signal post-processing techniques in infra-red thermography for materials structural evaluation, Exp. Mech., 2015, vol. 55, no. 4, pp. 667–680.

    Article  Google Scholar 

  18. Rantala, J., Wu, D., and Busse, G., Amplitude-modulated lock-in vibro thermography for NDE of polymers and composites, Res. Nondestr. Eval., 1996, vol. 7, no. 4, pp. 215–228.

    Article  Google Scholar 

  19. Meola, C., Carlomagno, G.M., Squillace, A., and Vitiello, A., Nondestructive evaluation of aerospace materials with lock-in thermography, Eng. Failure Anal., 2006, vol. 13, no. 3, pp. 380–388.

    Article  CAS  Google Scholar 

  20. Bai, W. and Wong, B.S., Evaluation of defects in composite plates under convective environments using lock-in thermography, Meas. Sci. Technol., 2001, vol. 12, no. 2, pp. 142–150.

    Article  CAS  Google Scholar 

  21. Tuli, S. and Mulaveesala, R., Defect detection by pulse compression in frequency modulated thermal wave imaging, Quant. Infrared Thermogr. J., 2005, vol. 2, pp. 41–54.

    Article  Google Scholar 

  22. Rani, A., Arora, V., Sekhar, K.R., and Mulaveesala, R., Analytical study of frequency modulated thermography for defect estimation in carbon fibre reinforced polymer, 2021 8th Int. Conf. Signal Process. Integr. Networks (SPIN) (Noida, 2021), pp. 419–423. https://doi.org/10.1109/SPIN52536.2021.9565986.

  23. He, Y., Deng, B., Wang, H., Cheng, L., Zhou, K., Cai, S., and Ciampa, F., Infrared machine vision and infrared thermography with deep learning: A review, Infrared Phys. & Technol., 2021, vol. 116, p. 103754.

    Article  CAS  Google Scholar 

  24. Rani, A. and Mulaveesala, R., Investigations on pulse compression favorable thermal imaging approaches for characterization of glass fibre reinforce polymers, Electron. Lett., 2020, vol. 56, no. 19, pp. 995–998.

    Article  Google Scholar 

  25. Rani, A. and Mulaveesala, R., Pulse compression favorable frequency modulated thermal wave imaging for non-destructive testing and evaluation: An analytical study, IOP Sci. Notes, 2021, vol. 2, no. 2, p. 024401.

  26. Cook, C.E. and Paolillo, J., A pulse compression pre-distortion function for efficient side-lobe reduction in high-power radar, Proc. IEEE, 1964, vol. 52, no. 4, pp. 377–389.

    Article  Google Scholar 

  27. Wang, F., Wang, Y., Liu, J., and Wang, Y., Optical excitation fractional Fourier transform (FrFT) based enhanced thermal-wave radar imaging (TWRI), Opt. Express, 2018, vol. 26, no. 17, pp. 21403–21417.

    Article  CAS  Google Scholar 

  28. Rani, A. and Mulaveesala, R., Depth resolved pulse compression favorable frequency modulated thermal wave imaging for quantitative characterization of glass fibre reinforced polymer, Infrared Phys. Technol., 2020, vol. 110, p. 103441.

    Article  CAS  Google Scholar 

  29. Rani, A. and Mulaveesala, R., Novel pulse compression favorable excitation schemes for infrared non-destructive testing and evaluation of glass fibre reinforced polymer materials, Compos. Struct., 2022, vol. 286, p.115338.

    Article  CAS  Google Scholar 

  30. Arora, V., Mulaveesala, R., Kumar, S., and Wuriti, S., Nondestructive evaluation of carbon fiber reinforced polymer using Golay coded thermal wave imaging, Infrared Phys. Technol., 2021, vol. 118, p. 103908.

    Article  CAS  Google Scholar 

  31. Arora, V., Mulaveesala, R., Rani, A., Kumar, S., Kher, V., Mishra, P., Kaur, J., Dua, G., and Jha, R.K., Infrared image correlation for nondestructive testing and evaluation of materials, J. Nondestr. Eval., 2021, vol. 40, no. 3, p. 75.

    Article  Google Scholar 

  32. Dua, G., Mulaveesala, R., Mishra, P., and Kaur, J., Infrared image correlation for non-destructive testing and evaluation of delaminations in glass fibre reinforced polymer materials, Infrared Phys. Technol., 2021, vol. 116, p. 103803.

    Article  CAS  Google Scholar 

  33. Mulaveesala, R., Arora, V., Dua, G., Rani, A., Kher, V., Sharma, A., and Kaur, K., Pulse compression favorable thermal wave imaging methods for testing and evaluation of carbon fibre reinforced polymer, Proc. SPIE Int. Soc. Opt. Eng., 2020, pp. 11409–11430.

  34. Carlslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Oxford Univ. Press, 1959, 2nd ed.

    Google Scholar 

  35. Haji-Sheikh, A., Cole, K., Beck, J., and Litkouhi, B., Heat Conduction Using Greens Functions, Boca Raton: CRC Press, 2010, 2nd ed.

    Google Scholar 

  36. Sharma, A., Mulaveesala, R., Dua, G., Arora, V., and Kumar, N., Digitized frequency modulated thermal wave imaging for detection and estimation of osteoporosis, IEEE Sens. J., 2021, vol. 21, no. 13, pp. 14003–14010.

  37. Mulaveesala, R., Arora, V., and Dua, G., Pulse compression favorable thermal wave imaging techniques for non-destructive testing and evaluation of materials, IEEE Sens. J., 2021, vol. 21, no. 11, pp. 12789–12797.

  38. Ahmad, J., Akula, A., Mulaveesala, R., and Sardana, H.K., Probability of detecting the deep defects in steel sample using frequency modulated independent component thermography, IEEE Sens. J., 2021, vol. 21, no. 10, pp. 11244–11252.

  39. Ahmad, J., Akula, A., Mulaveesala, R., and Sardana, H.K., Barker-coded thermal wave imaging for nondestructive testing and evaluation of steel material, IEEE Sens. J., 2019, vol. 19, no. 2, pp. 735–742.

  40. Arora, V. and Mulaveesala, R., Application of Golay complementary coded excitation schemes for non-destructive testing of sandwich structures, Opt. Lasers Eng., 2017, vol. 93, pp. 36–39.

    Article  Google Scholar 

  41. Arora, V., Siddiqui, J.A., Mulaveesala, R., and Muniyappa, A., Pulse compression approach to nonstationary infrared thermal wave imaging for nondestructive testing of carbon fiber reinforced polymers, IEEE Sens. J., 2015, vol. 15, no. 2, pp. 663–664.

  42. Dua, G., Mulaveesala, R., Kher, V., and Rani, A., Gaussian windowed frequency modulated thermal wave imaging for non-destructive testing and evaluation of carbon fibre reinforced polymers, Infrared Phys. Technol., 2019, vol. 98, pp. 125–131.

    Article  CAS  Google Scholar 

  43. Tabatabaei, N. and Mandelis, A., Thermal coherence tomography using match filter binary phase coded diffusion waves, Phys. Rev. Lett., 2011, vol. 107, no. 16, p.165901.

    Article  Google Scholar 

  44. Da Silva, W.F., Melo, R.A.C., Grosso, M., Pereira, G.R., and Riffel, D.B., Active thermography data-processing algorithm for nondestructive testing of materials, IEEE Access, 2020, vol. 8, pp. 175054–175062.

    Article  Google Scholar 

  45. Tabatabaei, N., Matched-filter thermography, Appl. Sci. (Switzerland), 2018, vol. 8, no. 4, p. 581.

  46. Pickering, S. and Almond, D., Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques, NDT & E Int., 2008, vol. 41, no. 7, pp. 501–509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravibabu Mulaveesala.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, A., Das, P., Sharma, A. et al. Estimation of Defect Depth in Carbon Fibre Reinforced Polymer Using Frequency Modulated Thermal Wave Imaging: An Analytical Study. Russ J Nondestruct Test 59, 117–128 (2023). https://doi.org/10.1134/S106183092260068X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106183092260068X

Keywords:

Navigation