Log in

Enhancing IR Thermographic Inspection of Subsurface Defects by Using the Technique of Edge Detection

  • THERMAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

This paper presents a novel method for separating subsurface defects in cured preimpregnated carbon fiber reinforced polimer specimens on thermal images based on edge detection. Every specimen was recorded by means of infrared thermography in reflective configuration and raw data was processed by several algorithms: thermal signal reconstruction, fast Fourier transformation and principal component analysis. Images were processed to determine damaged and nondamaged areas. Algorithm for determining area of discontinuity is based on edge detection techniques. Edge detection enables both simulated damages and boundaries between specimen and the background in the thermal image to be detected. Proposed algorithm is emphasizing edges within Sobel filter. Edges are defined as transition zone between damaged and nondamaged material. In this article edge detection algorithm is used as decision assistance for nondestructive evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., and John Philip, Medical applications of infrared thermography: A review, Infrared Phys. Technol., 2012, vol. 55, no. 4. https://doi.org/10.1016/j.infrared.2012.03.007

  2. Kylili Angeliki, Fokaides Paris, A., Christou Petros, and Kalogirou Soteris, A., Infrared thermography (IRT) applications for building diagnostics: A review, Appl. Energy, 2014, vol. 134, pp. 531–549. https://doi.org/10.1016/j.apenergy.2014.08.005

    Article  Google Scholar 

  3. Bagavathiappan, S., Lahiri, B.B., Saravanan, T., Philip John, and Jayakumar, T., Infrared thermography for condition monitoring—A review, Infrared Phys. Technol., 2013, vol. 60, pp. 35–55. https://doi.org/10.1016/j.infrared.2013.03.006

    Article  Google Scholar 

  4. Mayr, G., Plank, B., Sekelja, J., and Hendorfer, G., Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers, NDT & E Int., 2011, vol. 44, no. 7, pp. 537–543. https://doi.org/10.1016/j.ndteint.2011.05.012

    Article  CAS  Google Scholar 

  5. Simonov, D., Vavilov, V., and Chulkov, A., Infrared thermographic detector of hidden corrosion, Sens. Rev., 2020, vol. 40, no. 3, pp. 283–289. https://doi.org/10.1108/sr-12-2019-0322

    Article  Google Scholar 

  6. Lizaranzu Miguel, Lario Alberto, Chiminelli Agustín, and Amenabar Ibán, Non-destructive testing of composite materials by means of active thermography-based tools, Infrared Phys. Technol., 2015, vol. 71, pp. 113–120. https://doi.org/10.1016/j.infrared.2015.02.006

    Article  CAS  Google Scholar 

  7. Bagavac Petra, Krstulović-Opara Lovre, and Domazet Željko, Infrared thermography of steel structure by FFT, Mater. Today: Proc., 2019, vol. 12, pp. 298–303. https://doi.org/10.1016/j.matpr.2019.03.127

    Article  CAS  Google Scholar 

  8. Waugh, R.C., Dulieu-Barton, J.M., and Quinn, S., Modelling and evaluation of pulsed and pulse phase thermography through application of composite and metallic case studies, NDT & E Int., 2014, vol. 66, pp. 52–66. https://doi.org/10.1016/j.ndteint.2014.04.002

    Article  CAS  Google Scholar 

  9. Chrysafi, A.P., Athanasopoulos, N., and Siakavellas, N.J., Damage detection on composite materials with active thermography and digital image processing, Int. J. Therm. Sci., 2017, vol. 116, pp. 242–253. https://doi.org/10.1016/j.ijthermalsci.2017.02.017

    Article  CAS  Google Scholar 

  10. Ibarra-Castanedo, C., Avdelidis, N.P., Grenier, M., Maldague, X., and Bendada, A., Active thermography signal processing techniques for defect detection and characterization on composite materials, Proc. SPIE, 2010, vol. 7661, Termosense XXXII. https://doi.org/10.1117/12.850733

  11. Shepard, M., US Patent No. 8449176B2, 2013.

  12. Shepard, M., Flash Thermography of Aerospace Composites, IV Conf. Pan. END (Buenos Aires, 2007).

  13. Shepard, M., Characterization of full range time evolution in active thermography, Quant. Infrared Thermogr., 2014. https://doi.org/10.21611/qirt.2014.178

  14. Roche, J.-M., Passilly, F., and Balageas, D., A TSR-based quantitative processing procedure to synthesize thermal D-scans of real-life damage in composite structures, J. Nondestr. Eval., 2015, vol. 34, no. 4. https://doi.org/10.1007/s10921-015-0314-8

  15. Balageas, D., Roche, J.-M., and Leroy, F.-H., Comparative assessment of thermal NDT data processing techniques for carbon fiber reinforced polymers, Mater. Eval., 2017, vol. 75, pp. 1019—1031.

    Google Scholar 

  16. Ibarra-Castanedo and Maldague, X. Pulsed phase thermography reviewed, QIRT J., 2004, vol. 1, no. 1, pp. 47—70.

    Article  Google Scholar 

  17. Rajic, N., Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures, Compos. Struct., 2002, vol. 58, no. 4, pp. 521–528 https://doi.org/10.1016/S0263-8223(02)00161-7

    Article  Google Scholar 

  18. Milovanović, B. and Banjad Pečur, I., Principle component thermography for defect detection in reinforced concrete structures, Conf.: Adv. Cem. Concr. Technol. Afr. (Dar es Salaam, 2016).

  19. Omar, M.A., Parvataneni, R., and Zhou, Y., A combined approach of self-referencing and principle component thermography for transient, steady, and selective heating scenarios, Infrared Phys. Technol., 2010, vol. 53, no. 5, pp. 358–362. https://doi.org/10.1016/j.infrared.2010.06.004

    Article  CAS  Google Scholar 

  20. Yousefi, B., Sfarra, S., Ibarra-Castanedo, C., and Maldague, X.P.V., Comparative analysis on thermal non-destructive testing imagery applying candid covariance-free incremental principal component thermography (CCIPCT), Infrared Phys. Technol., 2007, vol. 85, pp. 163–169. https://doi.org/10.1016/j.infrared.2017.06.008

    Article  CAS  Google Scholar 

  21. Ratsakou Almpion, Skarlatos Anastassios, Reboud Christophe, and Lesselier Dominique, Shape reconstruction of delamination defects using thermographic infrared signals based on an enhanced Canny approach, Infrared Phys. Technol., 2020, vol. 111, article ID 103527. https://doi.org/10.1016/j.infrared.2020.103527

    Article  Google Scholar 

  22. Tse Peter W. and Wang, Gaochao, Sub-surface defects detection of by using active thermography and advanced image edge detection, J. Phys.: Conf. Ser., 2017, vol. 842, article ID 012029. https://doi.org/10.1088/1742-6596/842/1/012029

    Article  Google Scholar 

  23. Bajwa, U.I., Vardasca, R., Ring, F., and Plassmann, P., Comparison of boundary detection techniques to improve image analysis in medical thermography, Imaging Sci. J., 2010, vol. 58, no. 1, pp. 12–19. https://doi.org/10.1179/136821909X12520525092846

    Article  Google Scholar 

  24. Preben Gråberg Nes, Fast multi-scale edge-detection in medical ultrasound signals., Signal Process., 2012, vol. 92, no. 10, pp. 2394–2408. https://doi.org/10.1016/j.sigpro.2012.02.021

    Article  Google Scholar 

  25. Zhao Yu-qian, Gui Wei-hua, Chen Zhen-cheng, Tang **g-tian, and Li Ling-yun, Medical images edge detection based on mathematical morphology, 2005 IEEE Eng. Med. Biol. 27th Annu. Conf. (Shanghai, 2006), pp. 6492–6495. https://doi.org/10.1109/iembs.2005.1615986

  26. Lopez-Molina, C., De Baets, B., Bustince, H., Sanz, J., and Barrenechea, E., Multiscale edge detection based on Gaussian smoothing and edge tracking, Knowl.-Based Syst., 2013, vol. 44, pp. 101–111. https://doi.org/10.1016/j.knosys.2013.01.026

    Article  Google Scholar 

  27. Vavilov, V., **ngwang, G., Wei, S., and Yingtao, L., Peculiarities of detecting Teflon defect surrogates in CFRP by transient IR thermography, 2004 Quant. InfraRed Thermogr., 2004. https://doi.org/10.21611/qirt.2004.019

  28. Ibarra-Castanedo, C., Benitez, H., Maldague, X., and Bendada, A., Review of thermal-contrast-based signal processing techniques for the nondestructive testing and evaluation of materials by infrared thermography, 2007.

  29. Theodorakeas, P., Avdelidis, N.P., Ibarra-Castanedo, C., Koui, M., and Maldague, X., Pulsed thermographic inspection of CFRP structures: experimental results and image analysis tools, Proc. SPIE, 2014. https://doi.org/10.1117/12.2044687

  30. Fourier, J., Theorie du mouvement de la chaleur dans les corps solides–Partie, Memoires de l’Academie des Sciences, 1824, vol. 4, pp. 185–555.

    Google Scholar 

  31. Mateljan, I., ARTA Program for Impulse Response Measurement and Real Time Analysis of Spectrum Frequency Response. User Manual, Version 1.0.0, Split: Univ. Split, 2004.

    Google Scholar 

  32. Pratt, W.K., Digital Image Processing, New York: Wiley, 1991.

    Google Scholar 

  33. Canny, J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 1986, vol. 8, pp. 679–714.

    Article  CAS  Google Scholar 

  34. Acharjya, P., Das, R., and Ghoshal, D., Study and comparison of different edge detectors for image segmentation, Global J. Comp. Sci. Technol., 2012.

Download references

ACKNOWLEDGMENTS

The support of Rimac-Automobili hypercar industry is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Bagavac, L. Krstulović-Opara or Ž. Domazet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagavac, P., Krstulović-Opara, L. & Domazet, Ž. Enhancing IR Thermographic Inspection of Subsurface Defects by Using the Technique of Edge Detection. Russ J Nondestruct Test 57, 609–618 (2021). https://doi.org/10.1134/S1061830921070020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921070020

Keywords:

Navigation