Log in

Assessment of Scattered Damage in Structural Materials

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Methods for assessing scattered damage to materials are considered. Ultrasonic methods based on recording backscattered ultrasonic signals are among the most practically feasible methods for assessing scattered damage to materials at the mesolevel (the size of the probing wavelength). We describe methods for determining scattered damage in the volume of a material based on scanning the object surface with a normal double-crystal piezoelectric transducer, recording and statistically processing the backscattered signal in the form of an A-scan, constructing the spatial distribution of backscattering cross section in the form of a B-scan or tomographic image, and assessing damage in the material volume based on the relative change in the backscattering cross section or the “disorder” of its spatial image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodyushkin, V.M., From the search for defects to the search for an approaching faulty state, Vestn. Nauchn.-Tekh. Razvit., 2009, no. 4, pp. 51–56.

  2. Kozinkina, A.I., Rybakova, L.M., and Berezin, A.V., Assessment of the degree of microdestruction in deformation of metallic materials, Zavod. Lab. Diagn. Mater., 2006, vol. 72, no. 4, pp. 39–42.

    Google Scholar 

  3. Bobyr’, N.I., Babenko, A.E., and Khalimon, A.P., Continual damage mechanics and its use in complex low-cycle loading problems, Tekh. Diagn. Nerazrushayushchii Kontrol, 2008, no. 4, pp. 25–34.

  4. Lebedev, A.A., New characteristics of material degradation at the stage of development of scattered damage, Tekh. Diagn. Nerazrushayushchii Kontrol, 2008, no. 4, pp. 35–44.

  5. Nedoseka, S.A. and Nedoseka, A.Ya., Comprehensive assessment of damage and residual life of metals with operating time, Tekh. Diagn. Nerazrushayushchii Kontrol, 2010, no. 1, pp. 9–16.

  6. Nedoseka, S.A., Testing and forecasting service life of welded constructions by the acoustic-emission method, Extended Abstract of Doctoral (Eng.) Dissertation, Kyiv: Paton Electric Welding Institute, National Academy of Sciences of Ukraine, 2010.

    Google Scholar 

  7. Veksler, E.Ya., Zamekula, I.V., Tolstov, V.Yu., and Semeshko, E.V., A technique for testing and estimating the residual life of high-pressure steam pipelines at thermal power plants based on the level of metal microdamage, Tekh. Diagn. Nerazrushayushchii Kontrol, 2010, no. 1, pp. 23–31.

  8. Mishakin, V.V., Klyushnikov, V.A., and Gonchar, A.V., Relation between the deformation energy and the Poisson ratio during cyclic loading of austenitic steel, Tech. Phys, 2015, vol. 85, no. 5, pp. 665–668.

    Article  Google Scholar 

  9. Petrov, A.I. and Razuvaeva, M.V., Criterion for the pore-pore interaction in deformed materials, Tech. Phys., 2015, vol. 85, no. 4, pp. 607–609.

    Article  Google Scholar 

  10. Stepanova, L.V. and Igonin, S.A., Description of scattered damage—Yu.N. Rabotnov damage parameter: historical background, fundamental results, and current state, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2014, no. 3 (114), pp. 97–114.

    Google Scholar 

  11. Rabotnov, Yu.N., On the mechanism of long-term destruction, in Voprosy prochnosti materialov i konstruktsii (Questions of Strength of Materials and Structures), Moscow: Izd. Akad. Nauk. SSSR, 1959, pp. 5–7.

    Google Scholar 

  12. Kachanov, L.M., About the time of failure in creep conditions, Izv Akad. Nauk SSSR OTN, 1958, pp. 26–31.

  13. Erofeev, V.I. and Nikitina, E.A., The self-consistent dynamic problem of estimating the damage of a material by an acoustic method, Acoust. Phys, 2010, vol. 56, no. 4, pp. 584–587.

    Article  Google Scholar 

  14. Kashtanov, A.V. and Petrov, Yu.V., Energy approach to determination of the instantaneous damage level, Tech. Phys., 2006, vol. 76, no. 5, pp. 604–608.

    Article  Google Scholar 

  15. Murav’ev, Zuev, L.B., and Komarov, K.L., Skorost’ zyuka i struktura stali i splavov (Speed of Sound and Structure of Steel and Alloys), Moscow: Nauka, 1996.

    Google Scholar 

  16. Kachanov, L.M., Osnovy teorii plastichnosti (Fundamentals of the Theory of Plasticity), Moscow: Gos. Izd. Tekh. Teor. Lit.,1956.

    Google Scholar 

  17. Guz’, A.N., Makhort, F.G., and Gushcha, O.I., Vvedenie v akustouprugost’(Introduction to Acoustoelasticity), Kiev: Naukova Dumka, 1977.

    Google Scholar 

  18. Birring, A.S., Bartlett, M. L., and Kawano, K., Ultrasonic detection of hydrogen attack in steels, Corrosion, Natl. Assoc. Corros. Eng., 1989, vol. 45, no. 3.

  19. Hirsekorn, S., Van Andel, P.W., and Netzelmann, U., Ultrasonic methods to detect and evaluate damage in steel, NDT&E Int., 1998, vol. 15, no. 6, pp. 373–393.

    Google Scholar 

  20. Kot, R., Hydrogen attack, detection, assessment and evaluation, in 10th APCNDT, 2001.

  21. Nedoseka, A.Ya. and Nedoseka, S.A., The effect of local accumulation of defects on the propagation of acoustic emission waves. Communication 1, Tekh. Diagn. Nerazrushayushchii Kontrol, 2013, no. 2, pp. 3–8.

  22. Nedoseka, A.Ya., Nedoseka, S.A., and Boichuk, O.I., The effect of local accumulation of defects on the propagation of acoustic emission waves. Communication 2, Tekh. Diagn. Nerazrushayushchii Kontrol, 2013, no. 2, pp. 9–14.

  23. Nedoseka, A.Ya. and Nedoseka, S.A., The effect of local accumulation of defects on the propagation of acoustic waves in plates. Communication 1, Tekh. Diagn. Nerazrushayushchii Kontrol, 2013, no. 4, pp. 30–36.

  24. Nedoseka, A.Ya., Nedoseka, S.A., and Boichuk, O.I., The effect of local accumulation of defects on the propagation of acoustic waves in plates. Communication 2, Tekh. Diagn. Nerazrushayushchii Kontrol, 2014, no. 1, pp. 12–15.

  25. Barkhatov, V.A., Restoration of the Reflector Distribution in Distances. Inversion of the Echo-Signal Convolution, Russ. J. Nondestr. Test., 2003, vol. 39, no. 6, pp. 421–426.

    Article  Google Scholar 

  26. Barkhatov, V.A., Models of the formation of ultrasonic signals in image reconstruction problems, Russ. J. Nondestr. Test., 2005, vol. 41, no. 1, pp. 7–13.

    Article  Google Scholar 

  27. Barkhatov, V.A., Solution of the one-dimensional inverse acoustic problem with allowance for velocity dispersion and frequency-dependent wave attenuation, Russ. J. Nondestr. Test., 2009, vol. 45, no. 1, pp. 29–39.

    Article  Google Scholar 

  28. Barkhatov V.A. Experimental study of solutions to the one-dimensional inverse acoustic problem, Defectoscopiya, 2001, no. 12, pp. 55–64.

  29. Zaitsev, V.Yu., Nazarov, V.E., and Talanov, V.I., “Nonclassical” manifestations of microstructure-induced nonlinearities: new prospects for acoustic diagnostics, Phys. Usp., 2006, vol. 49, no. 1, pp. 89–94.

    Article  Google Scholar 

  30. Ham, S., Song, H., Oelze, M.L., and Popovics, J.S., A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete, Ultrasonics, 2016.

  31. Ermolov, I.N., Structure, Russ. J. Nondestr. Test., 2000, vol. 36, no. 6, pp. 463–464.

    Article  Google Scholar 

  32. Ermolov, I.N., Effect of acoustic contact on the echo signal and structural interference, Defectoscopiya, 1999, no. 5, pp. 96–97.

  33. https://www.cnde.iastate.edu/ultrasonics/ut-publications

  34. Thompson, R. and Margetan, F.J., Use of elastodynamic theories in the stochastic description of the effects of microstructure on ultrasonic flaw and noise signals, Wave Motion, 2002, vol. 36, pp. 347–365.

    Article  Google Scholar 

  35. Linxiao, Yu., Thompson, R.B., and Margetan, F.J., The spatial correlation of backscattered ultrasonic grain noise: theory and experimental validation, IEEE Trans. Ultrason. Eng., 2010, vol. 57, no. 2, pp. 363–378.

    Article  Google Scholar 

  36. Rudi, C. and Mlade, M., Testing method for quick determination of fresh concrete sample quality by meassurements at elastic properties of hydrating cement past. URL: http://www.sea-acustica.es/fileadmin/publicaciones/Sevilla02_ult03018.pdf

  37. Wang, T. and Saniie, J., Analysis of low-order autoregressive models for ultrasonic grain signal characterization, IEEE Trans. Ultrason. Eng., 1991, vol. 38, no. 2.

  38. Kurkov, A.V., The possibility of rapid testing of the mean grain size of rolled metal, Russ. J. Nondestr. Test., 2008, vol. 44, no. 1, pp. 41–44.

    Article  Google Scholar 

  39. Kurkov, A.V., Development of methods and tools for increasing the informativeness of ultrasonic measurements using general-purpose flaw detectors, Extended Abstract Cand. Sci. (Eng.) Dissertation, St. Petersburg: St. Petersburg Electrotech. Univ. “LETI”, 2010.

    Google Scholar 

  40. Dymkin, G.Y. and Kadikova, M.B., Evaluating the thermal resistance of building structures by using infrared thermagraphy under transient conditions, Russ. J. Nondestr. Test., 2009, vol. 45, no. 7, pp. 464–471.

    Article  Google Scholar 

  41. Zhitlukhina (Korh), Yu.V., Acoustic methods for detecting and visualizing microdefects in metals, Cand. Sci. (Eng.) Dissertation, Yekaterinburg, 2009.

    Google Scholar 

  42. Miralles, R., Vergara, L., and Gosalbez, J., Material grain noise analysis by using higher-order statistics, Signal Process., 2004, vol. 84, pp. 197–205.

    Article  Google Scholar 

  43. Kananen, V.E., Eskelinen, J.J., and Hæggstrom, E.O., Discriminating pores from inclusions in rolled steel by ultrasonic echo analysis, Meas. Sci. Technol., 2011, vol. 22, pp. 105704.

    Article  Google Scholar 

  44. Molika Nardo, R., Cerniglia, D., Lombardo, P., Pecoraro, S., and Infantino, A., Detection, characterization and sizing of hydrogen induced cracking in pressure vessels using phased array ultrasonic data processing—21st Eur. Conf. Fract., ECF21, Catania, Italy, June 20–24, 2016, Procedia Struct. Integr., 2016, no. 2, pp. 581–588.

  45. Romanishin, R.I. and Romanishin, I.M., Processing of backscattered signal in ultrasonic testing, Russ. J. Non-destr. Test., 2018, vol. 54, no. 6, pp. 394–399.

    Article  Google Scholar 

  46. Romanishin, R.I., Ivanitskii, Ya.L., Koshevoi, V.V., Shtayura, S.T., Romanishin, I.M., Mokryi, O.M., and Semak, P.M., Ultrasonic method of evaluating scattered damage to material based on backscattered signal, Tekh. Diagn. Nerazrushayushchii Kontrol, 2017, no. 2, pp. 42–49.

  47. Romanishin, R.I., Development of ultrasonic method for metal testing based on recording backscattered signal, Extended Abstract Cand. Sci. (Eng.) Dissertation, Lviv: Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 2017.

    Google Scholar 

  48. Correlation and convolution. URL: http://www.williamspublishing.com/PDF/5-8459-0710-1/part.pdf

  49. Ishimaru, A., Wave Propagation and Scattering in Random Media, New York: Academic Press, 1978, Vol. 1.

    Google Scholar 

  50. Aivazyan, S.A., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika. Osnovy modelirovaniya i pervichnaya obrabotka dannykh / Spravochnoe izd. (Applied Statistics. Fundamentals of Modeling and Primary Data Processing. A Handbook), Moscow: Finansy i Statistika, 1983.

    Google Scholar 

  51. Croux, C. and Dehon, C., Robust estimation of location and scale, in Encyclopedia of Environmetrics, El-Shaarawi, A.-H. and Piegorsch, W., Eds., Chichester, UK: John Wiley & Sons Ltd., 2013. URL: https://feb.kuleuven.be/public/u0017833/PDF-FILES/Croux_Dehon5.pdf

    Google Scholar 

  52. Kolmogorov, A.N., Median method in error theory, Matem. Sb., 1931, vol. 38, no. 3–4, pp. 47–50.

    Google Scholar 

  53. http://energyfirefox.blogspot.com/2012/02/boxplot.html

  54. Romanishin, I.M., Application of statistical approaches to estimating the degree of material degradation, Russ. J. Nondestr. Test., 2010, vol. 46, no. 8, pp. 573–579.

    Article  Google Scholar 

  55. Lebedov, A.O., Muzika, M.R., and Volchek, N.L., Ukrainian Patent no. 52107A, Method for estimating material degradation due to in-service damage accumulation: “LM-hardness method”, Byulleten’, 2003, no. 1.

  56. Koshoviy V.V., Shama M.A., Romanishin I.M., Romanishin R.I., Sharamaga R.V. The technology of ultrasound scan on the basis of a signal for control of viral viruses, Metallofiz. Noveishie Tekhnol., 2008, vol. 30, Special December Iss., pp. 677–687.

    Google Scholar 

  57. Koshevoi, V.V., Romanishin, I.M., Romanishin, R.I., Shama, M.A., and Sharamaga, R.V., Ukrainian Useful Model Patent no. 44165. Method for estimating metal degradation based on tomographic images, Byulleten’, 2009, no. 18.

  58. Koshevoi, V.V., Romanishin, I.M., Romanishin, R.I., and Sharamaga, R.V., Evaluation of material degradation on the basis of ultrasonic tomography during the detection of scattered signals, Russ. J. Nondestr. Test., 2010, vol. 46, no. 9, pp. 651–663.

    Article  Google Scholar 

  59. Koshovy, V.V., Romanyshyn, I.M., Romanyshyn, R.I., et al., Development of ultrasonic tomography techniques for diagnostics of nuclear power plant pi**, Strength Mater., 2013, vol. 45, no. 4, pp. 512–516.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. I. Romanishin or I. M. Romanishin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanishin, R.I., Romanishin, I.M. Assessment of Scattered Damage in Structural Materials. Russ J Nondestruct Test 55, 111–121 (2019). https://doi.org/10.1134/S1061830919020086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830919020086

Keywords

Navigation