Log in

Optimal length of capacitive-discharge and glow-discharge excilamps

  • Published:
Laser Physics

Abstract

The optimal tube length of capacitive-discharge and glow-discharge excimer lamps with ring and circular electrodes of equal radii is considered. It is demonstrated that, at the same potential difference between electrodes and their radii, the ratio of the optimal lengths of the tubes with circular and ring electrodes depends on width L of the ring electrodes. The ratio of the lengths decreases with decreasing L. A relationship between the tube length and radius, the width of ring electrodes, and the minimum voltage at the tube that provide for an approximately uniform glow of the discharge column in the presence of voltage pulses with opposite polarities at the electrodes is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kogelschatz, “Excimer Lamps: History, Discharge Physics, and Industrial Applications”, in Atomic and Molecular Pulsed Lasers V, Tomsk, Russia, 2003, Ed. by V. F. Tarasenko, G. V. Mayer, and G. G. Petrash (SPIE, Bellingham, WA, 2004); Proc. SPIE 5483, 272 (2004).

    Google Scholar 

  2. M. I. Lomaev, V. S. Skakun, A. E. Sosnin, et al., “Excilamps: Efficient Sources of Spontaneous UV and VUV Radiation,” Usp. Fiz. Nauk 173, 201–217 (2003) [Phys. Usp. 46, 193 (2003)].

    Google Scholar 

  3. A. M. Boichenko and S. I. Yakovlenko, “Modeling of Lamp Radiation Sources,” in Encyclopedia of Low-Temperature Plasma. Series B: Reference Supplements, Bases and Databases, Ed. by V. E. Fortov, Vol. XI-4: Gas and Plasma Lasers, Ed. by S. I. Yakovlenko (Fizmatlit, Moscow, 2005), p. 569 [in Russian].

    Google Scholar 

  4. A. P. Golovitskii, “On Possibility of Creation of Effective Ultraviolet Emitter on the Base of Continuous Glow Discharge in Mixture of Rare Gases and Halogens,” Pis’ma Zh. Tekh. Fiz. 18(8), 73–76 (1992) [Tech. Phys. Lett. 18, 234 (1992)].

    Google Scholar 

  5. A. M. Boichenko, A. N. Panchenko, V. F. Tarasenko, and S. I. Yakovlenko, “Efficient Emission of Xe-Cl2 (HCl) and Kr-Cl2 (HCl) Mixtures Pumped by a Glow Discharge,” Laser Phys. 5, 1112 (1995).

    Google Scholar 

  6. A. N. Panchenko, A. S. Polyakevich, E. A. Sosnin, and V. F. Tarasenko, “Glow Discharge in Low-Pressure Excilamps,” Russ. Phys. J. 42, 557–575 (1999).

    Article  Google Scholar 

  7. A. M. Boichenko and S. I. Yakovlenko, “Simulation of KrCl (222 nm) and XeCl (308 nm) Excimer Lamps with Kr/HCl(Cl2) and Xe/HCl(Cl2) Binary and Ne/Kr/Cl2 Ternary Mixtures Excited by Glow Discharge,” Laser Phys. 14, 1–14 (2004).

    Google Scholar 

  8. E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, “Capacitive Discharge Exciplex Lamps,” Phys. D: Appl. Phys. 38, 3194–3201 (2005).

    Article  ADS  Google Scholar 

  9. A. M. Boichenko and S. I. Yakovlenko, “Simulation of Xe/I2 Lamp Kinetics Upon Capacitive Discharge Excitation,” Laser Phys. 13, 1461–1466 (2003).

    Google Scholar 

  10. V. S. Skakun, M. I. Lomaev, and V. F. Tarasenko, “KrCl and XeCl Exciplex Glow Discharge Lamps with an Output Power of ∼1.5 kW,” Pis’ma Zh. Tekh. Fiz. 28(21), 42–47 (2002) [Tech. Phys. Lett. 28, 899 (2002)].

    Google Scholar 

  11. A. N. Panchenko and V. F. Tarasenko, “Radiation Characteristics of Subnormal Glow Discharge in Mixtures of Inert Gases and Halogens,” Opt. Spectrosk. 84, 337–339 (1998).

    ADS  Google Scholar 

  12. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, et al., “Sealed Efficient Excilamps Excited by a Capacitive Discharge,” Pis’ma Zh. Tekh. Fiz. 25(21), 27–32 (1999) [Tech. Phys. Lett. 25, 858 (1999)].

    Google Scholar 

  13. M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, et al., “Capacitive and Barrier Discharge Excilamps and Their Applications (Review),” Prib. Tekh. Eksp., No. 5, 5–26 (2006) [Instrum. Exp. Tech., No. 5, 595 (2006)].

  14. E. A. Sosnin, M. V. Erofeev, A. A. Lisenko, et al., “Investigations of Operation Characteristics of Capacitive Discharge Excilamps,” Opt. Zh. 69(7), 77–80 (2002).

    Google Scholar 

  15. V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics (NITs “Regulyarnaya i Khaoticheskaya Dinamika,” Moscow, 2002; Academic, London, 1964).

    Google Scholar 

  16. Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965; Nauka, Moscow, 1979).

    Google Scholar 

  17. Yu. B. Golubovskii, A. A. Kudryavtsev, V. O. Nekuchaev, et al., Kinetics of Electrons in Nonequilibrium Breakdown Plasma. Tutorial (St. Peterburg. Gos. Univ., St. Petersburg, 2004) [in Russian].

    Google Scholar 

  18. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  19. V. F. Tarasenko and S. I. Yakovlenko, Usp. Fiz. Nauk 174, 953–971 (2004) [Phys. Usp. 47, 887 (2004)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boichenko, A.M., Erofeev, M.V., Sosnin, E.A. et al. Optimal length of capacitive-discharge and glow-discharge excilamps. Laser Phys. 17, 798–806 (2007). https://doi.org/10.1134/S1054660X07060035

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X07060035

PACS numbers

Navigation