Log in

Simple Quasi-3D and 2D Integral Shear Deformation Theories for Buckling Investigation of Advanced Composite Plates

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In this paper, both 2D and quasi-3D hyperbolic integral shear deformation theories are employed for buckling analysis of functionally graded (FG) plates. The simplicity of the developed theory is due to the reduced number of the unknowns used in the field of displacement. The proposed model takes into account the effect of both normal and transverse shear deformations and ensures the nullity of transverse shear stresses at the top and bottom surfaces of the studied structure without including any shear correction factors. Properties of the material are microscopically inhomogeneous and change continuously according to a power law model in the z direction. The Navier method is utilized to study the mechanical buckling response of a simply supported FG plate under both uniaxial and biaxial compressive loading. The numerical study is validated by comparing the obtained results with the literature data. The influence of thickness stretching, geometric parameters, material index, and different loading cases on the critical buckling load is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Koizumi, M., FGM Activities in Japan, Composites. B. Eng., 1997, vol. 28, no. 1–2, pp. 1–4. https://doi.org/10.1016/s1359-8368(96)00016-9

    Article  Google Scholar 

  2. Koizumi, M. and Niino, M., Overview of FGM Research in Japan, MRS Bulletin, 1995, vol. 20, no. 1, pp. 19–21. https://doi.org/10.1557/S0883769400048867

    Article  Google Scholar 

  3. Kaysser, W.A. and Ilschner, B., FGM Research Activities in Europe, MRS Bulletin, 1995, vol. 20, no. 1, pp. 22–26. https://doi.org/10.1557/S0883769400048879

    Article  Google Scholar 

  4. Kar, V.R. and Panda, S.K., Nonlinear Flexural Vibration of Shear Deformable Functionally Graded Spherical Shell Panel, Steel Compos. Struct., 2015, vol. 18, no. 3, pp. 693–709. https://doi.org/10.12989/scs.2015.18.3.693

    Article  Google Scholar 

  5. Darilmaz, K., Vibration Analysis of Functionally Graded Material (FGM) Grid Systems, Steel Compos. Struct., 2015, vol. 18, no. 2, pp. 395–408. https://doi.org/10.12989/scs.2015.18.2.395

    Article  Google Scholar 

  6. Akbaş, Ş.D., Wave Propagation of a Functionally Graded Beam in Thermal Environments, Steel Compos. Struct., 2015, vol. 19, no. 6, pp. 1421–1447. https://doi.org/10.12989/scs.2015.19.6.1421

    Article  Google Scholar 

  7. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., and Ford, R.G., Functionally Graded Materials: Design, Processing and Application, Springer, 1999. https://doi.org/10.1201/9781420092578

  8. Yin, H.M., Sun, L.Z., and Paulino, G.H., Micromechanics-Based Elastic Model for Functionally Graded Materials with Particle Interactions, Acta Mater., 2004, vol. 52, no. 12, pp. 3535–3543. https://doi.org/10.1016/j.actamat.2004.04.007

    Article  ADS  Google Scholar 

  9. Nguyen, T.K., Sab, K., and Bonnet, G., Shear Correction Factors for Functionally Graded Plates, Mech. Adv. Mater. Struct., 2007, vol. 14, no. 8, pp. 567–575. https://doi.org/10.1080/15376490701672575

    Article  Google Scholar 

  10. Birman, V. and Byrd, L.W., Modeling and Analysis of Functionally Graded Materials and Structures, Appl. Mech. Rev., 2007, vol. 60, no. 1–6, pp. 195–216. https://doi.org/10.1115/1.2777164

    Article  ADS  Google Scholar 

  11. Zhong, Z. and Shang, E., Closed-Form Solutions of Three-Dimensional Functionally Graded Plates, Mech. Adv. Mater. Struct., 2008, vol. 15, no. 5, pp. 355–363. https://doi.org/10.1080/15376490801977528

    Article  Google Scholar 

  12. Ahmed, R.A., Fenjan, R.M., and Faleh, N.M., Analyzing Post-Buckling Behavior of Continuously Graded FG Nanobeams with Geometrical Imperfections, Geomech. Eng., 2019, vol. 17, no. 2, pp. 175–180. https://doi.org/10.12989/gae.2019.17.2.175

    Article  Google Scholar 

  13. Selmi, A., Exact Solution for Nonlinear Vibration of Clamped-Clamped Functionally Graded Buckled Beam, Smart Struct. Syst., 2020, vol. 26, no. 3, pp. 361–371. https://doi.org/10.12989/SSS.2020.26.3.361

    Article  Google Scholar 

  14. Zhao, X., Lee, Y.Y., and Liew, K.M., Mechanical and Thermal Buckling Analysis of Functionally Graded Plates, Compos. Struct., 2009, vol. 90, no. 2, pp. 161–171. https://doi.org/10.1016/j.compstruct.2009.03.005

    Article  Google Scholar 

  15. Kim, S.E., Thai, H.T., and Lee, J., Buckling Analysis of Plates Using the Two Variable Refined Plate Theory, Thin-Walled Struct., 2009, vol. 47, no. 4, pp. 455–462. https://doi.org/10.1016/j.tws.2008.08.002

    Article  Google Scholar 

  16. Mohammadi, M., Saidi, A.R. and Jomehzadeh, E., Levy Solution for Buckling Analysis of Functionally Graded Rectangular Plates, Appl. Compos. Mater., 2010, vol. 17, no. 2, pp. 81–93. https://doi.org/10.1007/s10443-009-9100-z

    Article  ADS  Google Scholar 

  17. Farzam, A. and Hassani, B., Thermal and Mechanical Buckling Analysis of FG Carbon Nanotube Reinforced Composite Plates Using Modified Couple Stress Theory and Isogeometric Approach, Compos. Struct., 2018, vol. 206, pp. 774–790. https://doi.org/10.1016/j.compstruct.2018.08.030

    Article  Google Scholar 

  18. Ansari, R., Torabi, J., and Hassani, R., In-Plane and Shear Buckling Analysis of FG-CNTRC Annular Sector Plates Based on the Third-Order Shear Deformation Theory Using a Numerical Approach, Comp. Math. Appl., 2018, vol. 75, no. 2, pp. 486–502. https://doi.org/10.1016/j.camwa.2017.09.022

    Article  Google Scholar 

  19. Singh, S.J. and Harsha, S.P., Buckling Analysis of FGM Plates under Uniform, Linear and Non-Linear In-Plane Loading, J. Mech. Sci. Technol., 2019, vol. 33, no. 4, pp. 1761–1767. https://doi.org/10.1007/s12206-019-0328-8

    Article  Google Scholar 

  20. Ruocco, E. and Reddy, J.N., A Closed-Form Solution for Buckling Analysis of Orthotropic Reddy Plates and Prismatic Plate Structures, Composites. B. Eng., 2019, vol. 169, pp. 258–273. https://doi.org/10.1016/j.compositesb.2019.03.015

    Article  Google Scholar 

  21. Semenov, A., Dynamic Buckling of Stiffened Shell Structures with Transverse ‎Shears under Linearly Increasing Load, J. Appl. Comput. Mech., 2022, vol. 8, no. 4, pp. 1343–1357. https://doi.org/10.22055/jacm.2022.39718.3452

    Article  Google Scholar 

  22. Sedighi, H.M., Shirazi, K.H., Noghrehabadi, A.R., and Yildirim, A.H., Asymptotic Investigation of Buckled Beam Nonlinear Vibration, Iran. J. Sci. Technol. Trans. Mech. Eng., 2012, vol. 36, no. M2, pp. 107–116.

    Google Scholar 

  23. Sedighi, H.M., Daneshmand, F., and Abadyan, M., Modeling the Effects of Material Properties on the Pull-in Instability of Nonlocal Functionally Graded Nano-Actuators, ZAMM, 2016, vol. 96, no. 3, pp. 385–400. https://doi.org/10.1002/zamm.201400160

    Article  ADS  Google Scholar 

  24. Vu, T.V., Khosravifard, A., Hematiyan, M.R., and Bui, T.Q., A New Refined Simple TSDT-Based Effective Meshfree Method for Analysis of Through-Thickness FG Plates, Appl. Math. Model., 2018, vol. 57, pp. 514–534. https://doi.org/10.1016/j.apm.2018.01.004

  25. Karami, B. and Karami, S., Buckling Analysis of Nanoplate-Type Temperature-Dependent Heterogeneous Materials, Adv. Nano Res., 2019, vol. 7, no. 1, pp. 51–61. https://doi.org/10.12989/ANR.2019.7.1.051

    Article  Google Scholar 

  26. Kiani, Y., NURBS-Based Thermal Buckling Analysis of Graphene Platelet Reinforced Composite Laminated Skew Plates, J. Therm. Stress., 2019, pp. 1–19. https://doi.org/10.1080/01495739.2019.1673687

  27. Timesli, A., Prediction of the Critical Buckling Load of SWCNT Reinforced Concrete Cylindrical Shell Embedded in an Elastic Foundation, Comp. Concr., 2020, vol. 26, no. 1, pp. 53–62. https://doi.org/10.12989/CAC.2020.26.1.053

    Article  Google Scholar 

  28. Yang, J., Wu, H., and Kitipornchai, S., Buckling and Postbuckling of Functionally Graded Multilayer Graphene Platelet-Reinforced Composite Beams, Compos. Struct., 2017, vol. 161, pp. 111–118. https://doi.org/10.1016/j.compstruct.2016.11.048

    Article  Google Scholar 

  29. Farrokh, M., Afzali, M., and Carrera, E., Mechanical and Thermal Buckling Loads of Rectangular FG Plates by Using Higher-Order Unified Formulation, Mech. Adv. Mater. Struct., 2019, pp. 1–10. https://doi.org/10.1080/15376494.2019.1578014

  30. Liu, Y., A Refined Shear Deformation Plate Theory, Int. J. Comput. Meth. Eng. Sci. Mech., 2011, vol. 12, no. 3, pp. 141–149. https://doi.org/10.1080/15502287.2011.564267

    Article  Google Scholar 

  31. Shi, G., A New Simple Third-Order Shear Deformation Theory of Plates, Int. J. Solids Struct., 2007, vol. 44, no. 13, pp. 4399–4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031

    Article  Google Scholar 

  32. Ferreira, A.J.M., Castro, L.M.S., and Bertoluzza, S., A High Order Collocation Method for the Static and Vibration Analysis of Composite Plates Using a First-Order Theory, Compos. Struct., 2009, vol. 89, no. 3, pp. 424–432. https://doi.org/10.1016/j.compstruct.2008.09.006

    Article  Google Scholar 

  33. Levinson, M., An Accurate Simple Theory of Static and Dynamics of Elastic Plates, Mech. Res. Commun., 1980, vol. 7, pp. 343–350.

    Article  Google Scholar 

  34. Wang, C.M., Reddy, J.N., and Lee, K.H., Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier, 2000.

  35. Ambartsumian, S.A., On the Theory of Bending Plates, Izv. Otd. Tech. Nauk AN SSSR, 1958, vol. 5, pp. 69–77.

    Google Scholar 

  36. Soldatos, K.P., A Transverse Shear Deformation Theory for Homogeneous Monoclinic Plates, Acta Mech., 1992, vol. 94, no. 3–4, pp. 195–220. https://doi.org/10.1007/BF01176650

    Article  MathSciNet  Google Scholar 

  37. Touratier, M., An Efficient Standard Plate Theory, Int. J. Eng. Sci., 1991, vol. 29, no. 8, pp. 901–916. https://doi.org/10.1016/0020-7225(91)90165-Y

    Article  Google Scholar 

  38. Karama, M., Afaq, K.S., and Mistou, S., Mechanical Behaviour of Laminated Composite Beam by the New Multi-Layered Laminated Composite Structures Model with Transverse Shear Stress Continuity, Int. J. Solids Struct., 2003, vol. 40, no. 6, pp. 1525–1546. https://doi.org/10.1016/S0020-7683(02)00647-9

    Article  Google Scholar 

  39. Reddy, J.N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Boca Raton: CRC Press, 2004.

  40. Daouadji, T.H. and Hadji, L., Analytical Solution of Nonlinear Cylindrical Bending for Functionally Graded Plates, Geomech. Eng., 2015, vol. 9, no. 5, pp. 631–644. https://doi.org/10.12989/GAE.2015.9.5.631

    Article  Google Scholar 

  41. Madenci, E., A Refined Functional and Mixed Formulation to Static Analyses of FGM Beams, Struct. Eng. Mech., 2019, vol. 69, no. 4, pp. 427–437. https://doi.org/10.12989/sem.2019.69.4.427

    Article  Google Scholar 

  42. Hadji, L., Influence of the Distribution Shape of Porosity on the Bending of FGM Beam Using a New Higher Order Shear Deformation Model, Smart Struct. Syst., 2020, vol. 26, no. 2, pp. 253–262. https://doi.org/10.12989/sss.2020.26.2.253

    Article  Google Scholar 

  43. Vinyas, M., On Frequency Response of Porous Functionally Graded Magneto-Electro-Elastic Circular and Annular Plates with Different Electro-Magnetic Conditions Using HSDT, Compos. Struct., 2020, vol. 240, p. 112044. https://doi.org/10.1016/j.compstruct.2020.112044

    Article  Google Scholar 

  44. Van Vinh, P. and Huy, L.Q., Finite Element Analysis of Functionally Graded Sandwich Plates with Porosity Via a New Hyperbolic Shear Deformation Theory, Defence Technol., 2021. https://doi.org/10.1016/j.dt.2021.03.006

  45. Qian, L.F., Batra, R.C., and Chen, L.M., Static and Dynamic Deformations of Thick Functionally Graded Elastic Plates by Using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Local Petrov–Galerkin Method, Composites. B. Eng., 2004, vol. 35, no. 6–8, pp. 685–697. https://doi.org/10.1016/j.compositesb.2004.02.004

    Article  Google Scholar 

  46. Carrera, E., Brischetto, S., Cinefra, M., and Soave, M., Effects of Thickness Stretching in Functionally Graded Plates and Shells, Composites. B. Eng., 2011, vol. 42, no. 2, pp. 123–133. https://doi.org/10.1016/j.compositesb.2010.10.005

    Article  Google Scholar 

  47. Mantari, J.L. and Guedes Soares, C., Generalized Hybrid Quasi-3D Shear Deformation Theory for the Static Analysis of Advanced Composite Plates, Compos. Struct., 2012, vol. 94, no. 8, pp. 2561–2575. https://doi.org/10.1016/j.compstruct.2012.02.019

    Article  Google Scholar 

  48. Akavci, S.S. and Tanrikulu, A.H., Static and Free Vibration Analysis of Functionally Graded Plates Based on a New Quasi-3D and 2D Shear Deformation Theories, Composites. B. Eng., 2015, vol. 83, pp. 203–215. https://doi.org/10.1016/j.compositesb.2015.08.043

    Article  Google Scholar 

  49. Shahsavari, D., Shahsavari, M., Li, L., and Karami, B., A Novel Quasi-3D Hyperbolic Theory for Free Vibration of FG Plates with Porosities Resting on Winkler/Pasternak/Kerr Foundation, Aerospace Sci. Technol., 2018, vol. 72, pp. 134–149. https://doi.org/10.1016/j.ast.2017.11.004

    Article  Google Scholar 

  50. Yu, T., Zhang, J., Hu, H., and Bui, T.Q., A Novel Size-Dependent Quasi-3D Isogeometric Beam Model for Two-Directional FG Microbeams Analysis, Compos. Struct., 2019, vol. 211, pp. 76–88. https://doi.org/10.1016/j.compstruct.2018.12.014

    Article  Google Scholar 

  51. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S., and Benachour, A., 2D and Quasi 3D Computational Models for Thermoelastic Bending of FG Beams on Variable Elastic Foundation: Effect of the Micromechanical Models, Geomech. Eng., 2020, vol. 22, no. 4, pp. 361–374. https://doi.org/10.12989/gae.2020.22.4.361

    Article  Google Scholar 

  52. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M., and Benachour, A., Impact of the Homogenization Models on the Thermoelastic Response of FG Plates on Variable Elastic Foundation, Geomech. Eng., 2020, vol. 22, no. 1, pp. 65–80. https://doi.org/10.12989/gae.2020.22.1.065

    Article  Google Scholar 

  53. Attia, M.A., On the Mechanics of Functionally Graded Nanobeams with the Account of Surface Elasticity, Int. J. Eng. Sci., 2017, vol. 115, pp. 73–101. https://doi.org/10.1016/j.ijengsci.2017.03.011

    Article  Google Scholar 

  54. Avcar, M., Free Vibration of Imperfect Sigmoid and Power Law Functionally Graded Beams, Steel Compos. Struct., 2019, vol. 30, no. 6, pp. 603–615. https://doi.org/10.12989/SCS.2019.30.6.603

    Article  Google Scholar 

  55. Nguyen, V.H., Nguyen, T.K., Thai, H.T., and Vo, T.P., A New Inverse Trigonometric Shear Deformation Theory for Isotropic and Functionally Graded Sandwich Plates, Composites. B. Eng., 2014, vol. 66, pp. 233–246. https://doi.org/10.1016/j.compositesb.2014.05.012

    Article  Google Scholar 

  56. Kiani, Y., NURBS-Based Thermal Buckling Analysis of Graphene Platelet Reinforced Composite Laminated Skew Plates, J. Therm. Stress., 2019, pp. 1–19. https://doi.org/10.1080/01495739.2019.1673687

  57. Madenci, E. and Özütok, A., Variational Approximate for High Order Bending Analysis of Laminated Composite Plates, Struct. Eng. Mech., 2020, vol. 73, no. 1, pp. 97–108. https://doi.org/10.12989/sem.2020.73.1.097

    Article  Google Scholar 

  58. Zouatnia, N. and Hadji, L., Static and Free Vibration Behavior of Functionally Graded Sandwich Plates Using a Simple Higher Order Shear Deformation Theory, Adv. Mater. Res. Int. J., 2019, vol. 8, no. 4, pp. 313–335. https://doi.org/10.12989/amr.2019.8.4.313

    Article  Google Scholar 

  59. Thai, H.T. and Choi, D.H., An Efficient and Simple Refined Theory for Buckling Analysis of Functionally Graded Plates, Appl. Math. Modell., 2012, vol. 36, no. 3, pp. 1008–1022. https://doi.org/10.1016/j.apm.2011.07.062

    Article  Google Scholar 

  60. Reddy, B.S., Kumar, J.S., Reddy, C.E., and Reddy, K.V.K., Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory, J. Composites, 2013, vol. 2013, pp. 1–12. https://doi.org/10.1155/2013/808764

    Article  Google Scholar 

  61. Zenkour, A.M. and Aljadani, M.H., Mechanical Buckling of Functionally Graded Plates Using a Refined Higher-Order Shear and Normal Deformation Plate Theory, Adv. Aircraft Spacecraft Sci., 2018, vol. 5, no. 6, pp. 615–632. https://doi.org/10.12989/aas.2018.5.6.615

    Article  Google Scholar 

  62. Thinh, T.I., Tu, T.M., Quoc, T.H., and Long, N.V., Vibration and Buckling Analysis of Functionally Graded Plates Using New Eight-Unknown Higher Order Shear Deformation Theory, Lat. Am. J. Solids Struct., 2016, vol. 13, no. 3, pp. 456–477. https://doi.org/10.1590/1679-78252522

    Article  Google Scholar 

  63. Mehar, K., Panda, S.K., and Mahapatra, T.R., Thermoelastic Nonlinear Frequency Analysis of CNT Reinforced Functionally Graded Sandwich Structure, Eur. J. Mech. A. Solids, 2017, vol. 65, pp. 384–396. https://doi.org/10.1016/j.euromechsol.2017.05.005

    Article  MathSciNet  ADS  Google Scholar 

  64. Mehar, K. and Panda, S.K., Multiscale Modeling Approach for Thermal Buckling Analysis of Nanocomposite Curved Structure, Adv. Nano Res., 2019, vol. 7, no. 3, pp. 181–190. https://doi.org/10.12989/ANR.2019.7.3.181

    Article  Google Scholar 

  65. Timesli, A., Prediction of the Critical Buckling Load of SWCNT Reinforced Concrete Cylindrical Shell Embedded in an Elastic Foundation, Comp. Concr., 2020, vol. 26, no. 1, pp. 53–62. https://doi.org/10.12989/CAC.2020.26.1.053

    Article  Google Scholar 

  66. Yaylaci, M. and Avcar, M., Finite Element Modeling of Contact Between an Elastic Layer and Two Elastic Quarer Planes, Comp. Concr., 2020, vol. 26, no. 2, pp. 107–114. https://doi.org/10.12989/CAC.2020.26.2.107

    Article  Google Scholar 

  67. Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P., and Doddamani, M., Effect of Axial Compression on Dynamic Response of Concurrently Printed Sandwich, Compos. Struct., 2020, p. 113223. https://doi.org/10.1016/j.compstruct.2020.113223

  68. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M., and Algarni, A., Effect of the Rotation on the Thermal Stress Wave Propagation in Non-Homogeneous Viscoelastic Body, Geomech. Eng., 2020, vol. 21, no. 1, pp. 1–9. https://doi.org/10.12989/GAE.2020.21.1.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bourada.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 1, pp. 113–134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younsi, A., Bourada, F., Bousahla, A.A. et al. Simple Quasi-3D and 2D Integral Shear Deformation Theories for Buckling Investigation of Advanced Composite Plates. Phys Mesomech 26, 346–366 (2023). https://doi.org/10.1134/S1029959923030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923030086

Keywords:

Navigation