Log in

Structure and Properties of CrN/TiN Multilayer Coatings Produced by Cathodic Arc Plasma Deposition on Copper and Beryllium-Copper Alloy

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This study investigates the structure and properties of multilayer coatings consisting of alternating CrN/TiN layers deposited on C11000 copper and aged C17200 beryllium-copper alloy. The coatings are produced by cathodic arc plasma deposition using two chromium and titanium cathodes. It is shown that coatings formed on the surface of copper and beryllium-copper alloy consist of well-separated submicron nitride layers with a total thickness of about 4 μm. The microhardness of the deposited multilayer coatings reaches 11–12 GPa. The adhesive strength is studied by scratch testing. The behavior of multilayer coatings is investigated in tribological tests with boundary lubrication. The fracture of coatings on copper and beryllium-copper alloy in scratch tests occurs at loads up to 10 and 20 N, respectively. The friction coefficients determined in tribological tests behave similarly depending on time for coatings on both copper and beryllium-copper alloy. With increasing load from 1 to 5 N, the friction coefficients decrease from 0.2 to 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Zhao, F., Ge, Y., Wang, L., and Wang, X., Tribological and Mechanical Properties of Hardness-Modulated TiAlSiN Multilayer Coatings Fabricated by Plasma Immersion Ion Implantation and Deposition, Surf. Coat. Technol., 2020, vol. 402, p. 126475. https://doi.org/10.1016/j.surfcoat.2020.126475

    Article  Google Scholar 

  2. Huang, X., Etson, I., and Shao, T., Effects of Elastic Moduls Mismatch between Coatings and Substrate on the Friction and Wear Properties of TiN and TiAlN Coating System, Wear, 2015, vol. 138–139, pp. 54–61. https://doi.org/10.1016/j.wear.2015.05.016

    Article  Google Scholar 

  3. Liu, L., Chen, H.H., Liu, X.Z., Guo, Q., Meng, T.X., Wang, Z.X., Yang, H.J., and Liu, X.P., Wear Resistance of TiN(Ti2N)/Ti Composite Layer by Plasma Surface Ti-Alloying and Nitriding, Appl. Surf. Sci., 2016, vol. 388, pp. 103–108. https://doi.org/10.1016/j.apsusc.2016.03.059

    Article  ADS  Google Scholar 

  4. Saladukhin, I., Abadias, G., Uglov, V., Zlotski, S., Van Vuuren, A.J., and O’Connell, H., Structural Properties and Oxidation Resistance of ZrN/SiNx, CrN/ SiNx and AlN/SiNx Multilayered Films Deposited by Magnetron Sputtering Technique, Coatings, 2020, vol. 10, p. 149. https://doi.org/10.3390/coatings10020149

    Article  Google Scholar 

  5. Ivanov, Yu.F., Pochetukha, V.V., Romanov, D.A., and Gromov, V.E., Structure and Properties of Ag-Ni-N Coating Formed on Copper by Electroexplosive Spraying Combined with Pulsed Electron Beam Irradiation and Nitriding, Phys. Mesomech., 2022, vol. 25, no. 1, pp. 18–25. https://doi.org/10.1134/S1029959922010039

    Article  Google Scholar 

  6. Yan, M.F., Zhu, Y.D., Zhang, C.S., Zhang, Y.X., Wang, Y.X., and Yang, L., Microstructure and Mechanical Properties of Copper-Nitrogen Multiphase Layers Produced by a Duplex Treatment on C17200 Copper-Beryllium Alloy, Mater. Des., 2015, vol. 84, pp. 10–17. https://doi.org/10.1016/j.matdes.2015.06.130

    Article  Google Scholar 

  7. Pogrebnyak, A.D., Shpak, A.P., Azarenko, N.A., and Beresnev, V.M., Structures and Properties of Hard and Superhard Nanocomposite Coatings, Phys.-Usp., 2009, vol. 52, no. 1, p. 29.

    Article  ADS  Google Scholar 

  8. Shugurov, A.R., Panin, A.V., Dmitriev, A.I., and Nikonov, A.Yu., Multiscale Fracture of Ti-Al-N Coatings under Uniaxial Tension, Phys. Mesomech., 2021, vol. 24, no. 2, pp. 185–195. https://doi.org/10.1134/S1029959921020089

    Article  Google Scholar 

  9. Chang, Y-Y., Chang, H., Jhao, L-J., and Chuang, C-C., Tribological and Mechanical Properties of Multilayered TiVN/TiSiN Coatings Synthesized by Cathodic Arc Evaporation, Surf. Coat. Technol., 2018, vol. 350, pp. 1071–1079. https://doi.org/10.1016/j.surfcoat.2018.02.040

    Article  Google Scholar 

  10. Athmani, M., Al-Rjoub, A., Cavaleiro, D., Chala, A., Cavaleiro, A., and Fernandes, F., Microstructural, Mechanical, Thermal Stability and Oxidation Behavior of TiSiN/CrVxN Multilayer Coatings Deposited by D.C. Reactive Magnetron Sputtering, Surf. Coat. Technol., 2021, vol. 405, p. 126593. https://doi.org/10.1016/j.surfcoat.2020.126593

    Article  Google Scholar 

  11. Bobzin, K., Kalscheuer, C., Carlet, M., and Tayyab, M., Influence of Aluminum Content on the Impact Fatigue of HPPMS CrAlN Coatings on Tool Steel, Phys. Mesomech., 2021, vol. 24, no. 5, pp. 625–632. https://doi.org/10.1134/S1029959921050143

    Article  Google Scholar 

  12. Denisov, V.V., Denisova, Y.A., Vardanyan, E.L., et al., Deposition of a Multilayer Coating in a Gas-Metal Beam-Plasma Formation at Low Pressure, Russ. Phys. J., 2021, vol. 64, pp. 145–150. https://doi.org/10.1007/s11182-021-02310-9

    Article  Google Scholar 

  13. Su, Y., Huang, W., Zhang, T., Chunbao, S., Hu, R., Wang, Z., and Cai, L., Tribological Properties and Microstructure of Monolayer and Multilayer Ta Coatings Prepared by Magnetron Sputtering, Vacuum, 2021, vol. 189, p. 110250. https://doi.org/10.1016/j.vacuum.2021.110250

    Article  ADS  Google Scholar 

  14. Tlili, B., Nouveau, C., Walock, M.J., Nasri, M., and Ghrib, T., Effect of Layer Thickness on Thermal Properties of Multilayer Thin Films Produced by PVD, Vacuum, 2012, vol. 86, pp. 1048–1056. https://doi.org/10.1016/j.vacuum.2011.09.008

    Article  ADS  Google Scholar 

  15. Wang, H.T., Xu, Y.X., and Chen, L., Optimization of Cr-Al-N Coating by Multilayer Architecture with TiSiN Insertion Layer, J. Alloy. Compd, 2017, vol. 728, pp. 952–958. https://doi.org/10.1016/j.jallcom.2017.09.096

    Article  Google Scholar 

  16. Barshilia, H.C., Prakash, M.S., Jain, A., and Rajam, K.S., Structure, Hardness and Thermal Stability of TiAlN and Nanolayered TiAlN/CrN Multilayer Films, Vacuum, 2005, vol. 77(2), pp. 169–179. https://doi.org/10.1016/j.vacuum.2004.08.020

    Article  ADS  Google Scholar 

  17. Lomello, F., Arab Pour Yazdi, M., Sanchette, P., Schuster, F., Tabarant, M., and Billard, A., Temperature Dependence of the Residual Stresses and Mechanical Properties in TiN/CrN Nanolayered Coating Processed by Cathodic Arc Deposition, Surf. Coat. Technol., 2014, vol. 238, pp. 216–222. https://doi.org/10.1016/j.surfcoat.2013.10.079

    Article  Google Scholar 

  18. Falsafein, M., Ashrafizadeh, F., and Kheirandish, A., Influence of Thickness on Adhesion of Nano-Structured MultiLayer CrN/CrAlN Coatings to Stainless Steel Substrate, Surf. Interfaces, 2018, vol. 13, pp. 178–185. https://doi.org/10.1016/j.surfin.2018.09.009

    Article  Google Scholar 

  19. Huang, M.D., Liua, Y., Meng, F.Y., Tong, L.N., and Li, P., Thick CrN/TiN Multilayers Deposited by Arc Ion Plating, Vacuum, 2013, vol. 89, pp. 101–104. https://doi.org/10.1016/j.vacuum.2011.12.004

    Article  ADS  Google Scholar 

  20. Dinesh Kumar, D., Kumar, N., Kalaiselvam, S., Dash, S., and Jayavel, R., Wear Resistant Super-Hard Multilayer Transition Metal-Nitride Coatings, Surf. Interfaces, 2017, vol. 7, pp. 74–82. https://doi.org/10.1016/j.surfin.2017.03.001

    Article  Google Scholar 

  21. Vereschaka, A.A. and Grigoriev, S.N., Study of Cracking Mechanisms in Multi-Layered Composite Nano-Structured Coatings, Wear, 2017, vol. 378–379, pp. 43–57. https://doi.org/10.1016/j.wear.2017.01.101

    Article  Google Scholar 

  22. Kolubaev, A.V., Sizova, O.V., Denisova, Yu.A., Leonov, A.A., Teryukalova, N.V., and Novitskaya, O.S., Multi-Phase Ion-Plasma Cu-Ti Coatings Deposited on Copper and Copper-Beryllium Alloy, IOP Conf. Ser. Mater. Sci. Eng., 2021, vol. 1100, p. 012050. https://doi.org/10.1088/1757-899X/1100/1/012050

    Article  Google Scholar 

  23. Zhu, Y.D., Yan, M.F., Zhang, Y.X., and Zhang, C.S., Surface Modification of C17200 Copper-Beryllium Alloy by Plasma Nitriding of Cu-Ti Gradient Film, J. Mater. Eng. Perform., 2018, vol. 27(3), pp. 961–969. https://doi.org/10.1007/s11665-018-3190-4

    Article  Google Scholar 

  24. Zhu, Y., Yan, M., Zhang, Q., Wang, Q., and Zhuo, H., Effects of the Prefabricated Cu-Ti Film on the Microstructure and Mechanical Properties of the Multiphase Coating by Thermo Plasma Nitriding on C17200 Cu Alloy, Coatings, 2019, vol. 9, article 694. https://doi.org/10.3390/coatings9110694

  25. **, W., Ding, W., Yu, S., Lin, N., Meng, T., Guo, Q., Liu, X., and Liu, X., Corrosion Behavior of TaC/Ta Composite Coatings on C17200 Alloy by Plasma Surface Alloying and CVD Carburizing, Surf. Coat. Technol., 2019, vol. 359, pp. 426–432. https://doi.org/10.1016/j.surfcoat.2018.12.074

    Article  Google Scholar 

  26. Cu (Copper) Binary Alloy Phase Diagrams, Okamoto, H., Schlesinger, M.E., and Mueller, E.M., Eds., ASM Int., 2016, vol. 3. https://doi.org/10.31399/asm.hb.v03.9781627081634

  27. Zhao, Ch., Zhu, Y., Yuan, Zh., and Li, J., Structure and Tribocorrosion Behavior of Ti/TiN Multilayer Coatings in Simulated Body Fluid by Arc Ion Plating, Surf. Coat. Technol., 2020, vol. 403, p. 126399. https://doi.org/10.1016/j.surfcoat.2020.126399

    Article  Google Scholar 

  28. Kim, G.S., Lee, S.Y., Hahn, J.H., Lee, B.Y., Han, J.G., Lee, J.H., and Lee, S.Y., Effects of the Thickness of Ti Buffer Layer on the Mechanical Properties of TiN Coatings, Surf. Coat. Technol., 2003, vol. 171, no. 1–3, pp. 83–90. https://doi.org/10.1016/S0257-8972(03)00243-3

    Article  Google Scholar 

  29. Gorelik, S.S., Rastorguev, L.N., and Skakov, Yu.A., X-Ray and Electron-Optical Analysis. Applications, Moscow: Metallurgiya, 1970.

  30. Zhao, Z.B., Rek, Z.U., Yalisove, S.M., and Bilello, J.C., Phase Formation and Structure of Magnetron Sputtered Chromium Nitride Films: In-Situ and Ex-Situ Studies, Surf. Coat. Technol., 2004, vol. 185, pp. 329–339. https://doi.org/10.1016/j.surfcoat.2003.12.026

    Article  Google Scholar 

  31. Sobol’, O.V., Andreev, A.A., Stolbovoy, V.A., Gorban, V.F., Pinchuk, N.V., and Meylekhov, A.A., Structural Engineering of Multilayer TiN/CrN System Obtained by the Vacuum Arc Evaporation, J. Nano-Electron. Phys., 2015, vol. 7(1), p. 01034.

    Google Scholar 

  32. Lengauer, W. and Eder, A., Nitrides: Transition Metal Solid-State Chemistry, vol. VI, in Encyclopedia of Inorganic Chemistry, Bruce King, R., Ed., Chichester: John Wiley & Sons, Ltd., 2005, pp. 3515–3531. https://doi.org/10.1002/0470862106.ia156

  33. Lofaj, F. and Németh, D., The Effects of Tip Sharpness and Coating Thickness on Nanoindentation Measurements in Hard Coatings on Softer Substrates by FEM, Thin Solid Films, 2017, vol. 644, pp. 173–181. https://doi.org/10.1016/j.tsf.2017.09.051

    Article  ADS  Google Scholar 

  34. Kolubaev, A.V., Sizova, O.V., Denisova, Yu.A., Leonov, A.A., Terukalova, N.V., and Byeli, A.V., Wear Resistance of Beryllium-Copper Alloy with Cu-Ti Coating, in Tribology for Mechanical Engineering: Proc. XIII Int. Conf., Moscow: IMASH RAN, 2020, pp. 121–124.

  35. Khadem, M., Penkov, O.V., Yang, H.-K., and Kim, D.-E., Tribology of Multilayer Coatings for Wear Reduction: A Review, Friction, 2017, vol. 5(3), pp. 248–262. https://doi.org/10.1007/s40544-017-0181-7

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. S.Yu. Tarasov for fruitful discussions of the experimental results.

Funding

Coatings deposited on copper (С11000) were studied under the government statement of work for ISPMS SB RAS, research line FWRW-0006. The study of the structure and properties of coatings on С17200 alloy was supported by the Russian Foundation for Basic Research (Project No. 20-58-00048 Bel_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolubaev.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 2, pp. 35–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolubaev, A.V., Sizova, O.V., Denisova, Y.A. et al. Structure and Properties of CrN/TiN Multilayer Coatings Produced by Cathodic Arc Plasma Deposition on Copper and Beryllium-Copper Alloy. Phys Mesomech 25, 306–317 (2022). https://doi.org/10.1134/S102995992204004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995992204004X

Keywords:

Navigation