Log in

Molecular Dynamic Study of the Cratering Process during High-Velocity Impact of Metallic Clusters with a Substrate

  • MECHANICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

In this work, numerical experiments were carried out in the framework of the molecular dynamics method to study the impact interaction of metallic nanoclusters of different sizes with a metallic substrate in a wide range of velocities. Analysis of the data obtained showed that the crater volume remains proportional to the impact energy and inversely proportional to the dynamic strength of the material, with the line slope being independent of the cluster size and the cluster–substrate material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. N. A. Zlatin, A. P. Krasil’shchikov, and G. I. Mishin, Ballistic Launchers and Their Application in Experimental Research (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  2. E. P. Bruce, in Proceedings of the 5th Symposium on Hypervelocity Impact, Denver, USA, 1961, p. 439.

  3. W. Herrmann and A. H. Jones, in Proceedings of the 5th Symposium on Hypervelocity Impact, Denver, USA, 1961, p. 389.

  4. K. A. Holsapple, Int. J. Impact Eng. 5, 343 (1987).

    Article  Google Scholar 

  5. B. P. Denardo, J. L. Summers, and C. R. Nysmith, NASA Tech. Note D-4067 (1967).

  6. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Elsevier Academic, Amsterdam, 2001).

    Google Scholar 

  7. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1987).

    Google Scholar 

  8. T. C. Germann, Int. J. Impact Eng. 33, 285 (2006).

    Article  Google Scholar 

  9. X.-L. Ma and Yang Wei, Nanotechnology 15 (5) (2004).

  10. V. V. Pogorelko, V. S. Krasnikov, and A. E. Mayer, Comput. Mater. Sci. 142, 108 (2018).

    Article  CAS  Google Scholar 

  11. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984). https://doi.org/10.1103/PhysRevB.29.6443

    Article  CAS  ADS  Google Scholar 

  12. A. F. Voter, Los Alamos Unclassified Tech. Report LA-UR-93-3901 (1993).

  13. R. R. Zope and Y. Mishin, Phys. Rev. B 68, 024102 (2003). https://doi.org/10.1103/PhysRevB.68.024102

  14. I. F. Golovnev, E. I. Golovneva, and A. V. Utkin, Phys. Mesomech. 22, 420 (2019). https://doi.org/10.1134/S1029959919050084

    Article  Google Scholar 

  15. I. Golovnev, E. Golovneva, and A. Utkin, Eng. Failure Anal. 105, 672 (2019). https://doi.org/10.1016/j.engfailanal.2019.07.040

    Article  CAS  Google Scholar 

  16. I. F. Golovnev, E. I. Golovneva, and A. V. Utkin, Phys. Mesomech. 21, 523 (2018). https://doi.org/10.1134/S1029959918060073

    Article  Google Scholar 

  17. I. F. Golovnev and E. I. Golovneva, Phys. Mesomech. 23, 189 (2020). https://doi.org/10.1134/S1029959920030017

    Article  Google Scholar 

  18. I. F. Golovnev and E. I. Golovneva, Phys. Mesomech. 23, 316 (2020). https://doi.org/10.1134/S1029959920040050

    Article  Google Scholar 

  19. A. V. Utkin, V. M. Fomin, and E. I. Golovneva, AIP Conf. Proc. 2288, 030083 (2020). https://doi.org/10.1063/5.0028297

  20. A. V. Utkin, Math. Montisnigri 39, 101 (2017).

    MathSciNet  Google Scholar 

  21. M. S. Ozhgibesov, T. S. Leu, C. H. Cheng, and A. V. Utkin, J. Mol. Graph. Model. 45, 45 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. W. Herrmann and J. S. Wilbeck, Int. J. Impact Eng. 5, 307 (1987).

    Article  Google Scholar 

  23. Yu. Shanbing, G. Sun, and Q. Tan, Int. J. Impact Eng. 15, 67 (1994).

    Article  Google Scholar 

  24. J. R. Baker, Int. J. Impact Eng. 17, 25 (1995).

    Article  Google Scholar 

  25. D. Tabor, The Hardness of Metals (Oxford Univ. Press, Oxford, 1951).

    Google Scholar 

  26. Y. Tirupataiah and G. Sundararajan, J. Mech. Phys. Solids 39, 243 (1991).

    Article  ADS  Google Scholar 

  27. B. J. Koeppel and G. Subhash, Wear 224, 56 (1999).

    Article  CAS  Google Scholar 

  28. A. V. Verkhovtsev, A. V. Yakubovich, G. B. Sushko, M. Hanauske, and A. V. Solov’yov, Comput. Mater. Sci. 76, 20 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Part of the computations was performed with the resources of the Equipment Sharing Center “Mechanics” of ITAM SB RAS (Novosibirsk). Part of the calculations was supported in through computational resources provided by the Shared Facility Center “Data Center of FEB RAS” (Khabarovsk).

Funding

This study was supported by a grant from the Russian Science Foundation, project no. 21-19-00733, https://rscf.ru/project/21-19-00733/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Utkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utkin, A.V., Fomin, V.M. Molecular Dynamic Study of the Cratering Process during High-Velocity Impact of Metallic Clusters with a Substrate. Dokl. Phys. 68, 430–433 (2023). https://doi.org/10.1134/S1028335823120078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335823120078

Keywords:

Navigation