Log in

New Markers for Determining the Chemical and Isomeric Composition of Carotenoids by Raman Spectroscopy

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The experimental and calculated on the basis of density functional theory Raman spectra of plant and bacterial carotenoids (neurosporene, spheroidene, lycopene, spirilloxanthin, β-carotene, lutein, ζ-carotene, α-carotene, and γ-carotene) are analyzed. A number of characteristic features in the Raman spectra of carotenoids are described for the first time, which make it possible to determine the structure of the end groups of molecules and to distinguish their isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. D. B. Thomas et al., Anal. Methods 6, 1301 (2014). https://doi.org/10.1039/C3AY41870G

    Article  CAS  Google Scholar 

  2. L. I. Elvira-Torales, J. García-Alonso, and M. J. Periago-Castón, Antioxidants 8, 229 (2019). https://doi.org/10.3390/antiox8070229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. J. Meléndez-Martínez, C. M. Stinco, and P. Mapelli-Brahm, Nutrients 11, 1093 (2019). https://doi.org/10.3390/nu11051093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. I. Mohanty et al., Br. J. Nutr. 88, 347 (2002). https://doi.org/10.1079/BJN2002659

    Article  CAS  PubMed  Google Scholar 

  5. L. Brown et al., Am. J. Clin. Nutr. 70, 517 (1999). https://doi.org/10.1093/ajcn/70.4.517

    Article  CAS  PubMed  Google Scholar 

  6. E. J. Johnson, Nutr. Clin. Care 5, 56 (2002). https://doi.org/10.1046/j.1523-5408.2002.00004.x

    Article  PubMed  Google Scholar 

  7. V. Böhm et al., J. Agric. Food Chem. 50, 221 (2002). https://doi.org/10.1021/jf010888q

    Article  CAS  PubMed  Google Scholar 

  8. B. Demmig-Adams, A. M. Gilmore, and W. W. A. Iii, FASEB J. 10, 403 (1996). https://doi.org/10.1096/fasebj.10.4.8647339

    Article  CAS  PubMed  Google Scholar 

  9. H.-E. Khoo et al., Molecules 16, 1710 (2011). https://doi.org/10.3390/molecules16021710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. W.-H. H. Guo, C.-Y. Y. Tu, and C.-H. H. Hu, J. Phys. Chem. B 112, 12158 (2008). https://doi.org/10.1021/jp8019705

    Article  CAS  PubMed  Google Scholar 

  11. G. Britton, in Natural Food Colorants (Springer US, Boston, MA, 1996), p. 197. https://doi.org/10.1007/978-1-4615-2155-6_7

    Book  Google Scholar 

  12. W. Stahl et al., Clin. Chem. 39, 810 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. T. W.-M. Boileau, A. C. Boileau, and J. W. Erdman, Exp. Biol. Med. 227, 914 (2002). .https://doi.org/10.1177/153537020222701012

    Article  CAS  Google Scholar 

  14. H. Wang et al., Curr. Res. Food Sci. 6, 100455 (2023). .https://doi.org/10.1016/j.crfs.2023.100455

  15. J. Lademann et al., Exp. Dermatol 20, 377 (2011). https://doi.org/10.1111/j.1600-0625.2010.01189.x

    Article  CAS  PubMed  Google Scholar 

  16. G. D. Smith and R. L. Jaffe, J. Phys. Chem. 100, 18718 (1996). .https://doi.org/10.1021/jp960413f

    Article  CAS  Google Scholar 

  17. V. S. Novikov, S. M. Kuznetsov, V. V. Kuzmin, K.  A.  Prokhorov, E. A. Sagitova, M. E. Darvin, J. Lademann, L. Yu. Ustynyuk, and G. Yu. Nikolaeva, Dokl. Phys. 66, 257 (2021). https://doi.org/10.1134/S1028335821090044

    Article  ADS  CAS  Google Scholar 

  18. M. E. Darvin, I. Gersonde, S. Ey, N. N. Brandt, H. Albrecht, S. A. Gonchukov, W. Sterry, and J. Lademann, Laser Phys. 14, 231 (2004).

    CAS  Google Scholar 

  19. M. Ishigaki et al., J. Phys. Chem. B 121, 8046 (2017). https://doi.org/10.1021/acs.jpcb.7b04814

    Article  CAS  PubMed  Google Scholar 

  20. V. S. Novikov et al., Spectrochim. Acta, Part A 270, 120755 (2022). https://doi.org/10.1016/j.saa.2021.120755

  21. V. S. Novikov et al., Spectrochim. Acta, Part A 255, 119668 (2021). https://doi.org/10.1016/j.saa.2021.119668

  22. A. Ashikhmin, Z. Makhneva, and A. Moskalenko, Photosynth. Res. 119, 291 (2014). https://doi.org/10.1007/s11120-013-9947-6

    Article  CAS  PubMed  Google Scholar 

  23. A. Ashikhmin et al., J. Photochem. Photobiol., B 170, 99 (2017). https://doi.org/10.1016/j.jphotobiol.2017.03.020

    Article  CAS  PubMed  Google Scholar 

  24. O. Nanba and K. Satoh, Proc. Natl. Acad. Sci. U. S. A. 84, 109 (1987). https://doi.org/10.1073/pnas.84.1.109

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. N. Laikov and Y. A. Ustynyuk, Russ. Chem. Bull. 54, 820 (2005). https://doi.org/10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  26. K. Lunde and L. Zechmeister, J. Am. Chem. Soc. 77, 1647 (1955). https://doi.org/10.1021/ja01611a071

    Article  CAS  Google Scholar 

  27. Y. Koyama et al., J. Raman Spectrosc. 19, 37 (1988). https://doi.org/10.1002/jrs.1250190107

    Article  ADS  CAS  Google Scholar 

  28. Y. Koyama et al., Biochim. Biophys. Acta 680, 109 (1982). https://doi.org/10.1016/0005-2728(82)90001-9

    Article  CAS  Google Scholar 

  29. S. Saito, M. Tasumi, and C. H. Eugster, J. Raman Spectrosc. 14, 299 (1983). https://doi.org/10.1002/jrs.1250140503

    Article  ADS  CAS  Google Scholar 

  30. A. Telfer, Philos. Trans. R. Soc. London, Ser. B 357 (1426), 1431 (2002). https://doi.org/10.1098/rstb.2002.1139

    Article  CAS  PubMed Central  Google Scholar 

  31. G. E. Bialek-Bylka et al., Photosynth. Res. 58, 135 (1998). https://doi.org/10.1023/A:1006112323144

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Joint Supercomputer Center, Russian Academy of Sciences, for providing computing resources. The authors thank Professor S. Takaichi from Nippon Medical School (Japan) for providing samples of Rhodobacter sphaeroides G1C.

Funding

This study was carried out with funds from a grant from the Ministry of Science and Higher Education of the Russian Federation for large-scale scientific projects in priority areas of scientific and technological development (grant identifier 075-15-2020-774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Novikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Sokolova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasimov, D.D., Ashikhmin, A.A., Bolshakov, M.A. et al. New Markers for Determining the Chemical and Isomeric Composition of Carotenoids by Raman Spectroscopy. Dokl. Phys. 68, 359–365 (2023). https://doi.org/10.1134/S1028335823110071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335823110071

Keywords:

Navigation