Log in

Electronic and Magnetic Properties of Alloys Based on the Cd3As2 Dirac Semimetal Doped with Mn Atoms in Different Concentrations

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

Theoretical studies predict that the light magnetic do** of Dirac semimetals leads to the occurrence of extraordinary properties and quantum states, including the Weyl semimetal, axionic insulator, topological superconductor, and others. However, thespecific materials that can exhibit these phenomena, as well as the characteristic concentrations of magnetic atoms are still unknown. In this work, the ab initio study of the electronic and magnetic properties of the Cd3As2 Dirac semimetal doped isoelectronically with Mn atoms at concentrations of 4, 6, and 8% has been carried out. In the analysis of the results, the main focus has been on the break of the spatial and time symmetry in the alloys, the behavior of the electron spectrum near the top of the Dirac cone, and spin ordering processes in Mn atoms. The results obtained have been compared with the previous theoretical and experimental data and, based on these results, a detailed picture of the effect of isoelectronic magnetic do** on the properties of the Cd3As2 Dirac semimetal has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. N. P. Armitage, E. J. Mele, and A. Vishvanath, Rev. Mod. Phys. 90, 015001 (2018).

  2. S. Wang, B. C. Lin, A. Q. Wang, D. P. Yu, and Z. M. Liao, Adv. Phys.: X 2, 518 (2017).

    CAS  Google Scholar 

  3. A. A. Burkov, Nat. Mater. 15, 1145 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. A.-Q. Wang, X.-G. Ye, D.-P. Yu, and Z. M. Liao, ACS Nano 14, 3755 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. P. Liu, J. R. Williams, and J. J. Cha, Nat. Rev. Mater. 4, 479 (2019).

    Article  CAS  ADS  Google Scholar 

  6. L. X. Wang, C. Z. Li, D. P. Yu, and Z. M. Liao, Nat. Commun. 7, 10769 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. W. Yu, W. Pan, D. L. Medlin, M. A. Rodriguez, S. R. Lee, Z. Q. Bao, and F. Zhang, Phys. Rev. Lett. 120, 177704 (2018).

  8. M. N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani, and R. J. Cava, Inorg. Chem. 53, 4062 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Phys. Rev. Lett. 113, 246402 (2014).

  10. M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, H. Lin, A. Bansil, F. Chou, M. Z. Hasan, T.-R. Chang, and H.-T. Jeng, Nat. Commun. 5, 3786 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, et al., Nat. Mater. 13, 677 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, and R. J. Cava, Nat. Mater. 13, 851 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).

  14. E. T. Kulatov, Yu. A. Uspenskii, L. N. Oveshnikov, A. B. Mekhiya, A. B. Davydov, A. I. Ril’, S. F. Marenkin, and B. A. Aronzon, Acta Mater. 219, 117249 (2021).

  15. A. Akrap, M. Hakl, S. Tchoumakov, I. Crassee, J. Kuba, M. O. Goerbig, et al., Phys. Rev. Lett. 117, 136401 (2016).

  16. D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Lohle, M. Dressel, and A. V. Pronin, Phys. Rev. B 93, 121202 (2016).

  17. L. N. Oveshnikov, A. B. Davydov, and A. V. Suslov, A.  I. Ril’, S. F. Marenkin, A. L. Vasiliev, and B. A. Aronzon, Sci. Rep. 10, 4601 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  ADS  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. V. Wang, N. Xu, J. C. Liu, G. Tang, and W. T. Geng, Comput. Phys. Commun. 267, 108033 (2021).

  21. E. T. Kulatov, V. N. Men’shov, V. V. Tugushev, and Yu. A. Uspenskii, Europhys. Lett. 115, 67004 (2016).

    Article  ADS  Google Scholar 

  22. E. T. Kulatov, V. N. Men’shov, V. V. Tugushev, and Yu. A. Uspenskii, JETP Lett. 109, 102 (2019).

    Article  CAS  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Joint Supercomputer Center of the Russian Academy of Sciences for providing supercomputing resources.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. T. Kulatov or Yu. A. Uspenskii.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulatov, E.T., Uspenskii, Y.A. Electronic and Magnetic Properties of Alloys Based on the Cd3As2 Dirac Semimetal Doped with Mn Atoms in Different Concentrations. Dokl. Phys. 68, 291–297 (2023). https://doi.org/10.1134/S102833582309001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102833582309001X

Keywords:

Navigation