Log in

The Phase Shift between the Global Surface Temperature and the CO2 Content in the Atmosphere According to Simulations with the Ensemble of CMIP6 Models

  • GEOPHYSICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The phase shifts between the global surface temperature T and the carbon dioxide content in the atmosphere q obtained in numerical experiments with models of the Earth’s climate system under the CMIP6 project (Coupled Models Intercomparison Project, phase 6) for the period of 1850–2014 have been analyzed. According to the study results, the sign of the phase shift between q and T depends not only on the time interval analyzed, but also on the processing method of the initial series. The initial q series (with a filtered annual cycle) is ahead in phase with the corresponding T series for most models and time intervals. The first differences (inter-monthly increments) of the q series lag in phase behind the corresponding first differences of the T series by about ten months with an adequate reproduction of the results obtained by analyzing the observation data over recent decades. It means that such a delay should not be an argument against the generally accepted global warming theory related to the current increase in temperature to the dominant influence of anthropogenic greenhouse gas emissions into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte et al., (Cambridge Univ. Press., 2021).

    Google Scholar 

  2. O. Humlum, K. Stordahl, and J. E. Solheim, Global Planet. Change 100, 51–69 (2013).

    Article  Google Scholar 

  3. P. Cox and C. Jones, Science 321 (5896), 1642–1644 (2008).

    Article  CAS  Google Scholar 

  4. E. Monnin, A. Indermohle, A. Dallenbach, J. Flockiger, B. Stauffer, T. Stocker, D. Raynaud, and J. M. Barnola, Science 291 (5501), 112–114 (2001).

    Article  CAS  Google Scholar 

  5. I. I. Mokhov, V. A. Bezverkhny, and A. A. Karpenko, Izv., Atmos. Oceanic Phys. 41 (5), 523–537 (2005).

    Google Scholar 

  6. I. I. Mokhov, Moscow Univ. Phys. Bull. 78 (3), 416 (2023).

    Article  Google Scholar 

  7. K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, and A. V. Timazhev, Dokl. Earth Sci. 463 (2), 863–868 (2015).

    Article  CAS  Google Scholar 

  8. K. E. Muryshev, A. V. Timazhev, and M. V. Dembitskaya, Fundam. Prikl. Klimatol., No. 3, 84–102 (2017).

  9. K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, and A. V. Timazhev, Global Planet. Change 148, 29–41 (2017).

    Article  Google Scholar 

  10. K. E. Muryshev, A. V. Eliseev, S. N. Denisov, I. I. Mokhov, A. V. Timazhev, and M. M. Arzhanov, Izv., Atmos. Oceanic Phys. 55 (3), 235–242 (2019).

    Article  Google Scholar 

  11. K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, A. V. Timazhev, M. M. Arzhanov, and S. N. Denisov, Dokl. Earth Sci. 501 (1), 949–955 (2021).

    Article  CAS  Google Scholar 

  12. A. Ganopolski and D. Roche, Quat. Sci. Rev. 28, 3337–3361 (2009).

    Article  Google Scholar 

  13. P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, Nature 408 (6809), 184–187 (2000).

    Article  CAS  Google Scholar 

  14. J.-L. Dufresne, P. Friedlingstein, M. Berthelot, L. Bopp, P. Ciais, L. Fairhead, H. Le Treut, and P. Monfray, Geophys. Rev. Lett. 29 (10), 1405 (2002).

    Article  Google Scholar 

  15. A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, Izv., Atmos. Oceanic Phys. 43 (1), 1–15 (2007).

    Article  Google Scholar 

  16. A. V. Eliseev and I. I. Mokhov, Theor. Appl. Climatol. 89 (1–2), 9–24 (2007).

    Article  Google Scholar 

  17. I. I. Mokhov and A. V. Eliseev, Dokl. Earth Sci. 443 (2), 532–537 (2012).

    Article  CAS  Google Scholar 

  18. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice Hall, Upper Saddle River, 1998).

    Google Scholar 

  19. V. K. Arora, A. Katavouta, R. G. Williams, C. D. Jones, V. Brovkin, P. Friedlingstein, J. Schwinger, L. Bopp, O. Boucher, P. Cadule, M. A. Chamberlain, J. R. Christian, C. Delire, R. A. Fisher, T. Hajima, T. Ilyina, E. Joetzjer, M. Kawamiya, C. D. Koven, J. P. Krasting, R. M. Law, D. M. Lawrence, A. Lenton, K. Lindsay, J. Pongratz, T. Raddatz, R. Sèfèrian, K. Tachiiri, J. F. Tjiputra, A. Wiltshire, T. Wu, and T. Ziehn, Biogeoscien-ces 17 (16), 4173–4222 (2020).

    Article  CAS  Google Scholar 

  20. A. V. Eliseev, Fundam. Prikl. Klimatol. 4, 9–31 (2017).

    Google Scholar 

Download references

Funding

The analysis of phase shifts in the model depending on the time scales of climate variations was supported by the Russian Science Foundation (grant no. 23-62-10043). The analysis of CO2 variations in CMIP6 models was carried out under a State Assignment of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, “Diagnostics and Modeling of Global Climate Changes and the Climate of the Arctic and Russian Regions” (project no. FMWR-2022-0014). The analysis was carried out using the results obtained under a project of the Russian Science Foundation (grant no. 23-47-00104) and an agreement with the Ministry of Education and Science of the Russian Federation (agreement no. 075-15-2021-577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Muryshev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Maslennikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muryshev, K.E., Eliseev, A.V., Mokhov, I.I. et al. The Phase Shift between the Global Surface Temperature and the CO2 Content in the Atmosphere According to Simulations with the Ensemble of CMIP6 Models. Dokl. Earth Sc. 516, 1036–1041 (2024). https://doi.org/10.1134/S1028334X24601688

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X24601688

Keywords:

Navigation