Log in

Geochemical and Sr–Nd Isotope Systematics of the Late Permian–Early Triassic Traps from the Kuznetsk Basin: Magma Sources and Correlation with the Noril’sk Region Volcanics

  • GEOCHEMISTRY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The study provides whole-rock geochemical and Rb–Sr and Sm–Nd isotope examinations of Permian–Triassic volcanics (basalts, basaltic andesites) and sills (trachydolerites, monzodiorites) from the Kuznetsk Basin, which is part of the Siberian Large Igneous Province. It is shown that the volcanic section of the Kuznetsk Basin consists of the Lower (I and II units: TiO2 = 1.6–1.9 wt %, Gd/Yb = 2.0–2.1) and Upper (III–VIII units: TiO2 = 1.4–1.8 wt %, Gd/Yb = 1.7–1.9) sequences. The Mayzass sill is geochemically correlated with the Unit II basaltic andesite of the Lower Sequence, and the Syrkashev sill is geochemically akin to the Upper Sequence. The Kuznetsk traps originated from the partial melting of a Sr–Nd isotopically heterogeneous subduction-modified lithospheric mantle. They are geochemically comparable to low-Ti basalts of the low–middle Nadezhdinsky suite from the Noril’sk region, but differ in Sr–Nd isotope composition. The Sr–Nd isotope signatures of non-contaminated lavas and rocks of the Syrkashev sill (εNd(T) = (+4.6)–(+2.4), (87Sr/86Sr)T = 0.7047–0.7054) are inherited from the ancient lithospheric mantle and do not represent the contribution of the Siberian plume. The Mayzass sill rocks (εNd(T) = (+2.2)–(+2.1); (87Sr/86Sr)T = 0.7055–0.7063) are derived from a parental melt contaminated with crustal carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. K. Reichow, M. S. Pringle , A. I. Al’Mukhamedov, M. B. Allen, V. L. Andreichev, M. M. Buslov, C. E. Davies, G. S. Fedoseev, J. G. Fitton, S. Inger, A. Ya. Medvedev, C. Mitchell, V. N. Puchkov, I. Yu. Safonova, R. A. Scott, and A. D. Saunders, Earth Planet. Sci. Lett. 277 (1–2), 9–20 (2009). https://doi.org/10.1016/j.epsl.2008.09.030

    Article  Google Scholar 

  2. S. D. Burgess and S. A. Bowring, Sci. Adv. 1 (7), e1500470 (2015). https://doi.org/10.1126/sciadv.15004

    Article  Google Scholar 

  3. T. V. Svetlitskaya and P. A. Nevolko, Gondwana Res. 39, 57–76 (2016). https://doi.org/10.1016/j.gr.2016.06.014

    Article  Google Scholar 

  4. N. N. Kruk, A. V. Plotnikov, A. G. Vladimirov, and V. A. Kutolin, Dokl. Earth Sci. 369A (9), 1387–1391 (1999).

    Google Scholar 

  5. V. A. Fedorenko, P. C. Lightfoot, A. J. Naldrett, G. K. Czamanske, C. J. Hawkesworth, J. L. Wooden, and D. S. Ebel, Int. Geol. Rev. 38 (2), 99–135 (1996). https://doi.org/10.1080/00206819709465327

    Article  Google Scholar 

  6. P. C. Lightfoot, C. J. Hawkesworth, J. Hergt, A. J. Nal-drett, N. S. Gorbachev, V. A. Fedorenko, and W. Do-herty, Contrib. Mineral. Petrol. 114, 171–188 (1993). https://doi.org/10.1007/BF00307754

    Article  Google Scholar 

  7. J. L. Wooden, G. K. Czamanske, V. A. Fedorenko, N. T. Arndt, C. Chauvel, R. M. Bouse, B.-S. W. King, R. J. Knight, and D. F. Siems, Geochim. Cosmochim. Acta 57 (15), 3677–3704 (1993). https://doi.org/10.1016/0016-7037(93)90149-Q

    Article  Google Scholar 

  8. S. J. Goldstein and S. B. Jacobsen, Earth Planet. Sci. Lett. 87 (3), 249–265 (1988). https://doi.org/10.1016/0012-821X(88)90013-1

    Article  Google Scholar 

  9. S. S. Sun and W. F. McDonough, Spec. Publ.—Geol. Soc. London 42 (1), 313–345 (1989). https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  10. J. A. Pearce, in Continental Basalts and Mantle Xenoliths (Shiva Publ., Nantwich, 1983), pp. 230–249.

    Google Scholar 

  11. P. N. Lin, R. J. Stern, and S. H. Bloomer, J. Geophys. Res. 94, 4497–4514 (1989). https://doi.org/10.1029/JB094iB04p04497

    Article  Google Scholar 

  12. J. A. Pearce, R. J. Stern, S. H. Bloomer, and P. Fryer, Geochem. Geophys. Geosyst. 6 (719), Q07006 (2005). https://doi.org/10.1029/2004GC000895

    Article  Google Scholar 

  13. J. A. Pearce, R. E. Ernst, D. W. Peate, and C. Rogers, Lithos 392–393, 106068 (2021). https://doi.org/10.1016/j.lithos.2021.106068

    Article  Google Scholar 

  14. M. Sharma, A. R. Basu, and G. V. Nesterenko, Geochim. Cosmochim. Acta 55 (4), 1183–1192 (1991). https://doi.org/10.1016/0016-7037(91)90177-7

    Article  Google Scholar 

  15. M. Sharma, A. R. Basu, and G. V. Nesterenko, Earth Planet. Sci. Lett. 113 (3), 365–381 (1992). https://doi.org/10.1016/0012-821x(92)90139-m

    Article  Google Scholar 

  16. B. G. Pokrovskii, Crustal Contamination of Mantle Magmas on Evidence of Isotope Geochemistry (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  17. G. Faure, Principles of Isotope Geology (John Wiley, New York, 1986).

    Google Scholar 

  18. T. Hanyu and E. Nakamura, Earth. Planets, Space 52, 61–70 (2000). https://doi.org/10.1186/BF03351614

    Article  Google Scholar 

  19. V. V. Vrublevskii, A. D. Kotel’nikov, and A. E. Izokh, Geol. Geofiz. 59 (7), 900–930 (2018). https://doi.org/10.15372/GiG20180702

    Article  Google Scholar 

  20. Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. De Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, Precambrian Res. 160 (1–2), 179–210 (2008). https://doi.org/10.1016/j.precamres.2007.04.021

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author gratefully acknowledges A.V. Nastavko for  his immense assistance in sampling, as well as Dr.  N.N. Kruk and anonymous reviewers for their helpful remarks during the article’s preparation.

Funding

This study is done on state assignment of IGM SB RAS (122041400237-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Svetlitskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetlitskaya, T.V. Geochemical and Sr–Nd Isotope Systematics of the Late Permian–Early Triassic Traps from the Kuznetsk Basin: Magma Sources and Correlation with the Noril’sk Region Volcanics. Dokl. Earth Sc. 510, 400–410 (2023). https://doi.org/10.1134/S1028334X23600263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X23600263

Keywords:

Navigation