Log in

Details of Interaction between CaCO3 and Fe at 4 GPa and 1400‒1500°C

  • GEOCHEMISTRY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The issue of the stability of carbonate matter (CaCO3) in subduction zones under reduced conditions remains topical. In addition, carbonates may be one of the key sources of carbon in the processes of diamond formation. The study was carried out using a high-pressure apparatus of the “split sphere” type (BARS) at a pressure of 4.0 ± 0.2 GPa and temperatures of 1400–1500°C. The interaction between CaCO3 and Fe results in the formation of Ca–Fe oxides (Ca-wustite) and carbon-bearing iron melt due to the release of free carbon. The appearance of metallic melt segregations is the first, necessary condition for diamond crystallization in the reduced mantle domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. J. F. Molina and S. Poli, Earth Planet. Sci. Lett. 176, 295–310 (2000).

    Article  Google Scholar 

  2. D. M. Kerrick and J. A. D. Connoly, Earth Planet. Sci. Lett. 189, 19–29 (2001).

    Article  Google Scholar 

  3. P. D. Clift, Rev. Geophys. 55 (1), 97–125 (2017).

    Article  Google Scholar 

  4. F. E. Brenker, C. Vollmer, L. Vincze, B. Vekemans, A. Szymanski, K. Jansses, I. Szaloki, L. Nasdala, W. Joswig, and F. Kaminsky, Earth Planet. Sci. Lett. 260, 1–9 (2007).

    Article  Google Scholar 

  5. G. P. Bulanova, M. J. Walter, C. B. Smith, S. C. Kohn, L. S. Armstrong, J. Blundy, and L. Gobbo, Contrib. Mineral. Petrol. 160, 489–510 (2010).

    Article  Google Scholar 

  6. E. M. Smith, S. B. Shirey, F. Nestola, E. S. Bullock, J. Wang, S. H. Richardson, and W. Wang, Science 35, 1403–1405 (2016).

    Article  Google Scholar 

  7. D. J. Frost and C. McCammon, Annu. Rev. Earth Planet Sci. 36, 389–420 (2008).

    Article  Google Scholar 

  8. V. Stagno, D. J. Frost, C. A. McCammon, H. Mohseni, and Y. Fei, Contrib. Mineral. Petrol. 169, 16 (2015).

    Article  Google Scholar 

  9. E. I. Zhimulev, A. I. Chepurov, E. F. Sinyakova, V. M. Sonin, A. A. Chepurov, and N. P. Pokhilenko, Geochem. Int. 50 (3), 205–216 (2012).

    Article  Google Scholar 

  10. E. I. Zhimulev, V. M. Sonin, A. M. Mironov, and A. I. Chepurov, Geochem. Int. 54 (5), 415–422 (2016).

    Article  Google Scholar 

  11. A. A. Chepurov, V. M. Sonin, J. M. Dereppe, E. I. Zhimulev, and A. I. Chepurov, Eur. J. Mineral. 32, 41–55 (2020).

    Article  Google Scholar 

  12. A. I. Chepurov, V. M. Sonin, E. I. Zhimulev, A. A. Chepurov, and A. A. Tomilenko, Dokl. Earth Sci. 440 (2), 1427–1430 (2011).

    Article  Google Scholar 

  13. N. S. Martirosyan, K. D. Litasov, A. F. Shatskii, and E. Ohtani, Geol. Geofiz. 56 (9), 1681–1692 (2015).

    Google Scholar 

  14. N. S. Martirosyan, T. Yoshino, A. Shatskiy, A. D. Chanyshev, and K. D. Litasov, Phys. Earth Planet. Inter. 259, 1–9 (2016).

    Article  Google Scholar 

  15. S. Gromilov, A. Chepurov, V. Sonin, E. Zhimulev, A. Sukhikh, A. Chepurov, and D. Shcheglov, J. Appl. Crystallogr. 52, 1378–1384 (2019).

    Article  Google Scholar 

  16. F. Kaminsky, Earth-Sci. Rev. 110 (1–4), 127–147 (2012).

    Article  Google Scholar 

  17. T. M. McCollom, Rev. Mineral. Geochem. 75, 467–494 (2013).

    Article  Google Scholar 

  18. V. M. Sonin, A. A. Tomilenko, E. I. Zhimulev, T. A. Bul’bak, T. Yu. Timina, A. I. Chepurov, and N. P. Pokhilenko, Dokl. Earth Sci. 493 (1), 508‒512 (2020).

    Article  Google Scholar 

  19. A. I. Chepurov, A. A. Tomilenko, V. M. Sonin, E. I. Zhimulev, T. A. Bul’bak, A. A. Chepurov, and N. V. Sobolev, Dokl. Earth Sci. 492 (1), 333‒337 (2020).

    Article  Google Scholar 

  20. A. A. Tomilenko, T. A. Bul’bak, A. M. Logvinova, V. M. Sonin, and N. V. Sobolev, Dokl. Earth Sci. 481 (1), 953‒957 (2018).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 21-17-00082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Zhimulev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhimulev, E.I., Sonin, V.M., Chepurov, A.A. et al. Details of Interaction between CaCO3 and Fe at 4 GPa and 1400‒1500°C. Dokl. Earth Sc. 506, 630–634 (2022). https://doi.org/10.1134/S1028334X22600268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X22600268

Keywords:

Navigation