Log in

Model of the Structural Ordering of Vacancies and the Formation of a Family of Ternary Compounds in I–III–VI Systems

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A characteristic feature of I—III–VI ternary chalcogenide compounds, which has a significant effect on the possibility of controlling the functional properties of materials on their base, is a strong tendency toward a deviation from stoichiometry. In this paper, we substantiate the existence of ternary semiconductor compounds with ordered vacancies in nanocrystals of the I—III–VI system using the triangulation method (Goryunova method for predicting the composition of diamond-like semiconductors). Vacancies are presented as a pseudoelement of the periodic system of the zero group assuming the formation of electrically neutral defect complexes consisting of a vacancy in the position of the group-I atom and a doubly ionized antistructural defect. In this case, the compound is considered from the standpoint of a concentration tetrahedron, and triangulation operations pass into tetrahedral operations. In the presence of such a “virtual” element, a set of ternary compounds known from publications with an ordered content of vacancies corresponding to semiconductors having four bonds per individual atom is determined instead of a single composition in the I—III–VI2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, Science 353, 885 (2016). https://doi.org/10.1126/science.aac5523

    Article  CAS  Google Scholar 

  2. M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, npj Flexible Electron. 2, 10 (2018). https://doi.org/10.1038/s41528-018-0023-3

  3. F. P. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, Nat. Rev. Mater. 2, 16100 (2017). https://doi.org/10.1038/natrevmats.2016.100

    Article  Google Scholar 

  4. B. Pelaz, C. Alexiou, R. A. Alvarez-Puebla, F. Alves, A. M. Andrews, S. Ashraf, L. P. Balogh, L. Ballerini, A. Bestetti, C. Brendel, et al., ACS Nano 11, 2313 (2017). https://doi.org/10.1021/acsnano.6b06040

    Article  CAS  Google Scholar 

  5. A. Sharan, F. P. Sabino, A. Janotti, N. Gaillard, T. Ogitsu, and J. B. Varley, J. Appl. Phys. 127, 065303 (2020). https://doi.org/10.1063/1.5140736

    Article  CAS  Google Scholar 

  6. J. Du, R. Singh, I. Fedin, A. S. Fuhr, and V. I. Klimov, Nat. Energy. 5, 409 (2020). https://doi.org/10.1038/s41560-020-0617-6

    Article  CAS  Google Scholar 

  7. G. Regmi, A. Ashok, P. Chawla, P. Semalti, S. Velumani, S. N. Sharma, and H. Castaneda, J. Mater. Sci.: Mater. Electron. 31, 7286 (2020). https://doi.org/10.1007/s10854-020-03338-2

    Article  CAS  Google Scholar 

  8. D. Aldakov, A. Lefrancois, and P. Reiss, J. Mater. Chem. C 1, 3756 (2013). https://doi.org/10.1039/C3TC30273C

    Article  CAS  Google Scholar 

  9. D. S. Mazing, A. A. Karmanov, L. B. Matyushkin, O. A. Aleksandrova, I. A. Pronin, and V. A. Moshnikov, Glass Phys. Chem. 42, 497 (2016). https://doi.org/10.1134/S1087659616050114

    Article  CAS  Google Scholar 

  10. D. S. Mazing, O. A. Korepanov, O. A. Aleksandrova, and V. A. Moshnikov, Opt. Spectrosc. 125, 773 (2018). https://doi.org/10.1134/S0030400X1811019X

    Article  CAS  Google Scholar 

  11. O. A. Korepanov, D. S. Mazing, O. A. Aleksandrova, V. A. Moshnikov, A. S. Komolov, E. F. Lazneva, and D. A. Kirilenko, Phys. Solid State 61, 2325 (2019). https://doi.org/10.1134/S1063783419120217

    Article  CAS  Google Scholar 

  12. S. Ghosh, S. Mandal, S. Mukherjee, C. K. De, T. Samanta, M. Mandal, D. Roy, and P. K. Mandal, J. Phys. Chem. Lett. 12, 1426 (2021). https://doi.org/10.1021/acs.jpclett.0c03519

    Article  CAS  Google Scholar 

  13. O. Yarema, M. Yarema, and V. Wood, Chem. Mater. 30, 1446 (2018). https://doi.org/10.1021/acs.chemmater.7b04710

    Article  CAS  Google Scholar 

  14. A. C. Berends, M. J. Mangnus, C. **a, F. T. Rabouw, and D. C. de Mello, J. Phys. Chem. Lett. 10, 16006 (2019). https://doi.org/10.1021/acs.jpclett.8b03653

    Article  CAS  Google Scholar 

  15. A. D. Leach and J. E. Macdonald, J. Phys. Chem. Lett. 7, 572 (2016). https://doi.org/10.1021/acs.jpclett.5b02211

    Article  CAS  Google Scholar 

  16. N. A. Goryunova, Complex Diamond-Like Semiconductors (Sov. Radio, Moscow, 1968) [in Russian].

    Google Scholar 

  17. C. Coughlan, M. Ibáñez, O. Dobrozhan, A. Singh, A. Cabot, and K. M. Ryan, Chem. Rev. 117, 5865 (2017). https://doi.org/10.1021/acs.chemrev.6b00376

    Article  CAS  Google Scholar 

  18. S. Jeong, H. C. Yoon, N. S. Han, J. H. Oh, S. M. Park, B. Min, Y. R. Do, and J. K. Song, J. Phys. Chem. C 121, 3149 (2017). https://doi.org/10.1021/acs.jpcc.7b00043

    Article  CAS  Google Scholar 

  19. J. M. Merino, S. Mahanty, M. Leon, R. Diaz, F. Rueda, and J. M. De Vidales, Thin Solid Films 361, 70 (2000). https://doi.org/10.1016/S0040-6090(99)00771-3

    Article  Google Scholar 

  20. O. Yarema, M. Yarema, D. Bozyigit, W. M. Lin, and V. Wood, ACS Nano 9, 11134 (2015). https://doi.org/10.1021/acsnano.5b04636

    Article  CAS  Google Scholar 

  21. S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. Lett. 78, 4059 (1997). https://doi.org/10.1103/PhysRevLett.78.4059

    Article  CAS  Google Scholar 

  22. S. B. Zhang, Phys. Rev. B 57, 9642 (1998). https://doi.org/10.1103/PhysRevB.57.9642

    Article  CAS  Google Scholar 

  23. L. B. Matyushkin and V. A. Moshnikov, Semiconductors 51, 1337 (2017). https://doi.org/10.1134/S106378261710013X

    Article  CAS  Google Scholar 

  24. A. N. Aleshin, I. P. Shcherbakov, D. A. Kirilenko, L. B. Matyushkin, and V. A. Moshnikov, Phys. Solid State 61, 256 (2019). https://doi.org/10.1134/S1063783419020021

    Article  CAS  Google Scholar 

  25. T. Omata and K. Nose, J. Appl. Phys. 105, 073106 (2009). https://doi.org/10.1063/1.3103768

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. S. Mazing, O. A. Aleksandrova or V. A. Moshnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazing, D.S., Aleksandrova, O.A. & Moshnikov, V.A. Model of the Structural Ordering of Vacancies and the Formation of a Family of Ternary Compounds in I–III–VI Systems. J. Surf. Investig. 17, 1378–1382 (2023). https://doi.org/10.1134/S1027451023060356

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060356

Keywords:

Navigation