Log in

Measurements of the Thermophysical Characteristics of Thin-Film Metal Filters for Extreme-Ultraviolet Radiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Knowledge of the emissivity and thermal conductivity of thin metal films used in conjunction with multilayer mirrors for the spectral selection of radiation in the extreme-ultraviolet- and “soft”-X-ray wavelength ranges is necessary in order to correctly calculate the heating of film elements at high heat loads. Heating is associated with absorption in the film of a significant fraction of the incident intensity, and the concept of a high heat load is somewhat arbitrary, since even at an absorbed intensity level on the order of 1 W/cm2 a freestanding film can be heated in vacuum by several hundred degrees. In the first approximation, to estimate the thermal-conductivity coefficient, one could use tabular values for bulk samples of the corresponding metals or use the well-known Wiedemann-Franz law which links the thermal conductivity and the electrical resistivity of the sample; the latter is easier to measure. However, an analysis of the published data indicates significant errors that are possible when using any of these approaches. Therefore, in this work, we measure the thermal conductivity directly by processing the temperature distribution obtained by infrared (IR) pyrometry over a film sample mounted on a heated frame or heated by a flowing electric current. The thermophysical characteristics (thermal conductivity and emissivity) are determined for samples of film absorption filters based on Mo, Al, and Be of submicron thickness (from 100 nm), as well as for films of copper: a metal whose bulk samples have high thermal and electrical conductivity. As expected, significant differences are found between the thermal and electrical properties of the film materials and the properties of the same metals in monolithic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. Brouns, Adv. Opt. Technol. 6, 221 (2017). https://www.doi.org/10.1515/aot-2017-0023

    Article  CAS  Google Scholar 

  2. M. van de Kerkhof, H. Jasper, L. Levasier, R. Peeters, R. van Es, J.-W. Bosker, A. Zdravkov, E. Lenderink, F. Evangelista, P. Broman, B. Bilski, and T. Last, Proc. SPIE 10143, 101430D (2017). https://www.doi.org/10.1117/12.2258025

    Google Scholar 

  3. M. M. Barysheva, S. Yu. Zuev, A. Ya. Lopatin, V. I. Luchin, A. E. Pestov, N. N. Salashchenko, N. N. Tsybin, and N. I. Chkhalo, Tech. Phys. 65, 1726 (2020). https://doi.org/10.1134/S1063784220110043

    Article  Google Scholar 

  4. N. N. Salashchenko and N. I. Chkhalo, Proc. School of Young Scientists “Modern X-Ray Optics 2022” (Nizhny Novgorod, 2022), p. 72. http://modern.xray-optics.ru.

  5. H. I. Smith, J. Vac. Sci. Technol., B 14, 4318 (1996). https://www.doi.org/10.1116/1.589044

    Article  CAS  Google Scholar 

  6. M. Okada, T. Kishiro, K. Yanagihara, M. Ataka, N. Anazawa, and S. Matsui, J. Vac. Sci. Technol., B 28, 740 (2010). https://www.doi.org/10.1116/1.3449270

    Article  CAS  Google Scholar 

  7. M. Hädrich, T. Siefke, M. Banash, and U. D. Zeitner, Photonics Views 19, 28 (2022). https://www.doi.org/10.1002/phvs.202200036

  8. J. G. Hust and A. B. Lankford, Thermal Conductivity of Aluminum, Copper, Iron, and Tungsten for Temperatures from 1 K to the Melting Point (Natl. Bureau Stand., Boulder, CO, 1984).

    Book  Google Scholar 

  9. A. D. Avery, S. J. Mason, D. Basset, D. Wesenberg, and B. L. Zink, Phys. Rev. B 92, 214410 (2015). https://www.doi.org/10.1103/PhysRevB.92.214410

    Article  Google Scholar 

  10. Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, Sci. Rep. 5, 1 (2015). https://www.doi.org/10.1038/srep10718

    Google Scholar 

  11. X. Zhang, H. **e, M. Fujii, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, Appl. Phys. Lett. 86, 171912 (2005). https://www.doi.org/10.1063/1.1921350

    Article  Google Scholar 

  12. F. Völklein, H. Reith, and A. Meier, Phys. Status Solidi A 210, 106 (2013). https://www.doi.org/10.1002/pssa.201228478

    Article  Google Scholar 

  13. D. J. Kim, D. S. Kim, S. Cho, S. W. Kim, S. H. Lee, and J. C. Kim, Int. J. Thermophys. 25, 281 (2004). https://www.doi.org/10.1023/b:ijot.0000022340.65615.22

    Article  CAS  Google Scholar 

  14. N. Bodenschatz, A. Liemert, S. Schnurr, U. Wiedwald, and P. Ziemann, Rev. Sci. Instrum. 84, 084904 (2013). https://www.doi.org/10.1063/1.4817582

    Article  Google Scholar 

  15. L. D. Zhu, F. Y. Sun, J. Zhu, D. W. Tang, Y. H. Li, and C. H. Guo, Chin. Phys. Lett. 29, 066301 (2012). https://www.doi.org/10.1088/0256-307X/29/6/066301

    Article  Google Scholar 

  16. A. Greppmair, B. Stoib, N. Saxsena, C. Gerstberger, P. Muller-Bushbaum, M. Stutzmann, and M. S. Brandt, Rev. Sci. Instr.um 88, 044903 (2017). https://www.doi.org/10.1063/1.4979564

    Article  Google Scholar 

  17. S. A. Gusev, M. N. Drozdov, E. B. Klyuenkov, A. Ya. Lopatin, V. I. Luchin, D. E. Pariev, A. E. Pestov, N. N. Salashchenko, N. N. Tsybin, N. I. Chkhalo, and L. A. Shmaenok, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 482 (2012). https://doi.org/10.1134/S1027451012060134

    Article  CAS  Google Scholar 

  18. N. I. Chkhalo, M. N. Drozdov, S. A. Gusev, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, D. A. Tatarskiy, N. N. Tsybin, and S. Yu. Zuev, Appl. Opt. 58, 21 (2019). https://www.doi.org/10.1364/AO.58.000021

    Article  CAS  Google Scholar 

  19. S. Yu. Zuev, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, D, A. Tatarskii, N. N. Tsybin, and N. I. Chkhalo, Zh. Tekh. Fiz. 92, 92 (2022). https://www.doi.org/10.21883/JTF.2022.01.51857.197-21

  20. N. I. Chkhalo, M. N. Drozdov, E. B. Kluenkov, S. V. Kuzin, A. Ya. Lopatin, V. I. Luchin, N. N. Salashchenko, N. N. Tsybin, and S. Yu. Zuev, Appl. Opt. 55, 4683 (2016). https://www.doi.org/10.1364/AO.55.004683

    Article  CAS  Google Scholar 

  21. Y. A. Volkov, L. S. Palatnik, and A. T. Pugachev, Zh. Eksp. Teor. Fiz. 70, 2244 (1976).

    CAS  Google Scholar 

  22. B. T. Boiko, A. T. Pugachev, and V. M. Bratsychin, Thin Solid Films 17, 157 (1973). https://www.doi.org/10.1016/0040-6090(73)90124-7

    Article  CAS  Google Scholar 

  23. T. Kralik, V. Musilova, P. Hanzelka, and J. Frolec, Metrologia 53, 743 (2016). https://www.doi.org/10.1088/0026-1394/53/2/743

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by state assignment #0030-2021-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Lopatin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopatin, A.Y., Luchin, V.I., Salashchenko, N.N. et al. Measurements of the Thermophysical Characteristics of Thin-Film Metal Filters for Extreme-Ultraviolet Radiation. J. Surf. Investig. 17, 1323–1331 (2023). https://doi.org/10.1134/S1027451023060344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060344

Keywords:

Navigation