Log in

Electronic Structure and Seebeck Coefficient of the Vanadium-Doped Layered Copper–Chromium Disulfides

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The comprehensive experimental and theoretical study of the structure of the valence band and conduction band of vanadium-substituted solid solutions CuCr1 – xVxS2 (x = 0–0.40) is carried out using both quantum chemistry calculations and X-ray absorption and emission spectroscopy. For a detailed analysis of the fine structure of the X-ray emission and absorption spectra, the experimental spectra are corrected for the width of the instrument-distortion function and the width of the internal level. The corrected experimental spectra are compared with the distributions of the partial atomic densities of states of metals and sulfur obtained from quantum-chemical calculations within the framework of density functional theory using the BAND and FDMNES software packages. Comparison of the experimental and theoretical data allows one to interpret changes in the fine structure of the X-ray absorption K-edges and X-ray emission lines of the valence band with an increase in the vanadium concentration. It is shown that after cationic substitution the character of the distribution of occupied and unoccupied states for copper, chromium, and sulfur is similar to that for the initial copper–chromium disulfide. The contribution of vanadium states replaces the contribution of chromium states at the valence-band top and the conduction-band bottom, which causes the metal–insulator transition. Interpretation of the nonmonotonic character of the temperature dependence of the Seebeck coefficient of CuCr1 – xVxS2 solid solutions, obtained for the first time, is carried out using the results of the experimental and theoretical study of the electronic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. C. Tewari, T. S. Tripathi, P. Kumar, A. K. Rastogi, S. K. Pasha, and G. Gupta, J. Electron. Mater. 40, 2368 (2011). https://www.doi.org/10.1007/s11664-011-1789-4

    Article  CAS  Google Scholar 

  2. E. V. Korotaev, M. M. Syrokvashin, I. Yu. Filatova, K. G. Pelmenev, V. V. Zvereva, and N. N. Peregudova, J. Electron. Mater. 47, 3392 (2018). https://www.doi.org/10.1007/s11664-018-6230-9

    Article  CAS  Google Scholar 

  3. A. I. Romanenko, J. Phys. D: Appl. Phys. 55, 135302 (2022). https://www.doi.org/10.1088/1361-6463/ac453e

    Article  CAS  Google Scholar 

  4. A. Kaltzoglou, P. Vaqueiro, T. Barbier, E. Guilmeau, and A. V. Powell, J. Electron. Mater. 43, 2029 (2014). https://www.doi.org/10.1007/s11664-013-2941-0

    Article  CAS  Google Scholar 

  5. R. F. Almukhametov, R. A. Yakshibaev, E. V. Gabitov, A. R. Abdullin, and R. M. Kutusheva, Phys. Status Solidi B 236, 29 (2003). https://www.doi.org/10.1002/pssb.200301413

    Article  CAS  Google Scholar 

  6. G. R. Akmanova and A. D. Davleshina, Lett. Mater. 3, 76 (2013). https://www.doi.org/10.22226/2410-3535-2013-2-76-78

  7. A. Karmakar, K. Dey, S. Chatterjee, S. Majumdar, and S. Giri, Appl. Phys. Lett. 104, 052906 (2014). https://www.doi.org/10.1063/1.4863937

    Article  Google Scholar 

  8. F. M. R. Engelsman, G. A. Wiegers, F. Jellinek, and B. van Laar, J. Solid State Chem. 6, 574 (1973). https://www.doi.org/10.1016/S0022-4596(73)80018-0

    Article  CAS  Google Scholar 

  9. G. M. Abramova and G. A. Petrakovskii, Low Temp. Phys. 32, 725 (2006). https://www.doi.org/10.1063/1.2219495

    Article  CAS  Google Scholar 

  10. N. Tsujii, H. Kitazawa, and G. Kido, Phys. Status Solidi C 3, 4417 (2006). https://www.doi.org/10.1002/pssc.200669659

    Article  CAS  Google Scholar 

  11. N. Le Nagard, G. Collin, and O. Gorochov, Mater. Res. Bull. 14, 1411 (1979). https://www.doi.org/10.1016/0025-5408(79)90083-7

    Article  CAS  Google Scholar 

  12. D. Srivastana, G. C. Tewari, M. Kappinen, and R. M. Nieminen, J. Phys.: Condens. Matter 25, 105504 (2013). https://www.doi.org/10.1088/0953-8984/25/10/105504

    Google Scholar 

  13. E. V. Korotaev, M. M. Syrokvashin, I. Y. Filatova, A. V. Kalinkin, and A. V. Sotnikov, Sci. Rep. 11, 18934 (2021). https://www.doi.org/10.1038/s41598-021-98350-9

    Article  CAS  Google Scholar 

  14. Y.-X. Chen, B.-P. Zhang, Z.-H. Ge, and P.-P. Shang, J. Solid State Chem. 186, 109 (2012). https://www.doi.org/10.1016/j.jssc.2011.11.040

    Article  CAS  Google Scholar 

  15. N. Tsujii and H. Kitazawa, J. Phys.: Condens. Matter 19, 145245 (2007). https://www.doi.org/10.1088/0953-8984/19/14/145245

    Google Scholar 

  16. E. V. Korotaev, M. M. Syrokvashin, I. Y. Filatova, and V. V. Zvereva, Vacuum 179, 109390 (2020). https://www.doi.org/10.1016/j.vacuum.2020.109390

    Article  CAS  Google Scholar 

  17. K. V. Shalimova, Semiconductor Physics (Lan’, Moscow, 2021) [in Russian].

  18. L. N. Mazalov, X-Ray Spectra (Sib. Otd., Ross. Akad. Nauk, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  19. E. V. Korotaev, V. V. Kanazhevskiy, N. N. Peregudova, M. M. Syrokvashin, L. N. Mazalov, V. V. Sokolov, I. Yu. Filatova, and A. Yu. Pichugin, J. Struct. Chem. 57, 1355 (2016). https://www.doi.org/10.1134/S0022476616070088

    Article  CAS  Google Scholar 

  20. A. P. Sadovskii, Doctoral Dissertation in Chemistry (Inst. Inorg. Chem., Sib. Branch, Russ, Acad. Sci., Novosibirsk, 1975).

  21. I. Ya. Nikiforov, Izv. AN SSSR. Ser. fiz. 1957. T. 21. š 10. C. 1362. Izv. Akad. Nauk SSSR, Ser. Fiz. 21, 1362 (1957).

    CAS  Google Scholar 

  22. Y. Joly, Phys. Rev. B 63, 120 (2001). https://www.doi.org/10.1103/PhysRevB.63.125120

    Article  Google Scholar 

  23. Inorganic Crystal Structure Database (FIZ Karlsruhe, 2022). https://icsd.fiz-karlsruhe.de. Accessed May 10, 2022.

  24. BAND. Periodic DFT for Nanotubes, Surfaces, and Bulk. Software for Chemistry and Materials (2022). https://www.scm.com. Accessed June 1, 2022.

  25. E. V. Korotaev, M. M. Syrokvashin, I. Yu. Filatova, S. V. Trubina, A. D. Nikolenko, D. V. Ivlyushkin, P. S. Zavertkin, and V. V. Kriventsov, AIP Conf. Proc. 2299, 080004 (2020). https://www.doi.org/10.1063/5.0030414

  26. G. S. Henderson, F. M. F. de Groot, and B. J. A. Moulton, Rev. Mineral. Geochem. 78, 75 (2014). https://www.doi.org/10.2138/rmg.2014.78.3

  27. E. V. Korotaev, V. V. Kanazhevskiy, N. N. Peregudova, M. M. Syrokvashin, L. N. Mazalov, V. V. Sokolov, I. Yu. Filatova, and A. Yu. Pichugin, J. Struct. Chem. 57, 1355 (2016). https://www.doi.org/10.1134/S0022476616070088

    Article  CAS  Google Scholar 

  28. L. N. Mazalov, Yu. P. Dikov, N. A. Kryuchkova, V. V. Sokolov, I. Yu. Filatova, E. V. Korotaev, and A. D. Fedorenko, J. Struct. Chem. 51, 51 (2010). https://www.doi.org/10.1007/s10947-010-0190-0

    Article  Google Scholar 

  29. S. Larsson, J. Electron Spectrosc. Relat. Phenom. 8, 171 (1976). https://www.doi.org/10.1016/0368-2048(76)81003-1

    Article  CAS  Google Scholar 

  30. R. L. Barinskii and V. A. Nefedov, X-Ray Spectral Determination of the Charge of Atoms in Molecules (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  31. E. V. Korotaev, M. M. Syrokvashin, I. Yu. Filatova, S. V. Trubina, A. D. Nikolenko, D. V. Ivlyushkin, P. S. Zavertkin, A. V. Sotnikov, and V. V. Kriventsov, Appl. Phys. A 126, 537 (2020). https://www.doi.org/10.1007/s00339-020-03715-y

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful to V.V. Kanazevsky PhD (Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences) for providing the absorption spectra of the metals, V.L. Mazalova PhD (DESY Hamburg, Germany), and A.L. Rogalev (ESRF, Grenoble, France) for providing the absorption spectra of sulfur, and also the Ministry of Science and Higher Edducation of the Russian Federation (projects no. 121031700313-8, 121031700315-2).

The part of the experimental data was obtained using the equipment of the Shared Research Center of the Siberian Synchrotron and Terahertz Radiation Center on the basis of “VEPP-4–VEPP-2000 Complex” at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Korotaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotaev, E.V., Syrokvashin, M.M., Filatova, I.Y. et al. Electronic Structure and Seebeck Coefficient of the Vanadium-Doped Layered Copper–Chromium Disulfides. J. Surf. Investig. 17, 1472–1482 (2023). https://doi.org/10.1134/S1027451023060307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060307

Keywords:

Navigation