Log in

On the Optical Properties and Structure of In2O3 Films Deposited onto Al2O3 (012) Substrates by dc-Magnetron Sputtering

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of studying the optical properties and structure of In2O3 films on Al2O3 (012) substrates deposited by dc-magnetron sputtering are summarized. The films investigated differ in terms of the deposition time, substrate temperature, and the presence of additional heat treatment in air. According to X-ray diffraction measurements, these films show a reflection, which correspond to the (222) plane of the cubic modification of In2O3. Its exact position and half-width depend on the deposition time. The optical properties of the resulting films are explained by the microstructure, which is inhomogeneous in thickness and formed during the sputtering of a target with a relatively low mechanical strength. Thus, the refractive index of the films deposited onto substrates at room temperature increases in the direction from the substrate to the external interface. At a substrate temperature of more than 300°C, the refractive index of the films is uniform, except for a rough layer on the surface. Heat treatment reduces the number of defects in the crystal structure of the films and leads to densification of the film material. As a result, inhomogeneity of the refractive index disappears and the observed band gap for direct transitions decreases. The latter results from a change in the Burstein–Moss shift as a consequence of a decrease in the lattice-defect concentration. The band gap for indirect transitions (corresponding to the true value of the band gap) is insensitive to annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. A. Yousif M. and H. Hasan, J. Biosens. Bioelectron. 6, 1000192 (2015). https://doi.org/10.4172/2155-6210.1000192

    Article  CAS  Google Scholar 

  2. J. Liu, W. Guo, F. Qu, C. Feng, C. Li, L. Zhu, J. Zhou, S. Ruan, and W. Chen, Ceram. Int. 40, 6685 (2014). https://doi.org/10.1016/j.ceramint.2013.11.129

    Article  CAS  Google Scholar 

  3. A. A. Khalefa, J. M. Marei, H. A. Radwan, J. and M. Rzaij, J. Digest Nanomater. Biostruct. 16, 197 (2021).

    Article  Google Scholar 

  4. D. Manno, M. D. Giulio, T. Siciliano, E. Filippo, and A. Serra, J. Phys. D: Appl. Phys. 34, 2097 (2001). https://doi.org/10.1088/0022-3727/34/14/303

    Article  CAS  Google Scholar 

  5. Yu. M. Nikolaenko, A. N. Artemov, Yu. B. Medvedev, N. B. Efros, I. V. Zhikharev, I. Yu. Reshidova, A. A. Tikhii, and S. V. Kara-Murza, J. Phys. D: Appl. Phys. 49, 375302 (2016). https://doi.org/10.1088/0022-3727/49/37/375302

    Article  CAS  Google Scholar 

  6. S. Kaneko, H. Torii, M. Soga, K. Akiyama, M. Iwaya, M. Yoshimoto, and T. Amazawa, Jpn. J. Appl. Phys. 51 (1S), AC02 (2012).

    Article  Google Scholar 

  7. S. K. Yadav, S. Das, N. Prasad, B. K. Barick, S. Arora, D. S. Sutar, and S. Dhar, J. Vac. Sci. Technol., A 38, 033414 (2020). https://doi.org/10.1116/6.0000038

    Article  CAS  Google Scholar 

  8. X. Du, J. Yu, X. **u, Q. Sun, W. Tang, and B. Man, Vacuum 167, 1 (2019). https://doi.org/10.1016/j.vacuum.2019.05.035

    Article  CAS  Google Scholar 

  9. M. Nistor, W. Seiler, C. Hebert, E. Matei, J. Perrière, Appl. Surf. Sci. 307, 455 (2014). https://doi.org/10.1016/j.apsusc.2014.04.056

    Article  CAS  Google Scholar 

  10. W. Seiler, M. Nistor, C. Hebert, J. and Perriere, Sol. Energy Mater. Sol. Cells 116, 34 (2013). https://doi.org/10.1016/j.solmat.2013.04.002

    Article  CAS  Google Scholar 

  11. M. Z. Jarzebski, Phys. Status Solidi A 71, 13 (1982). https://doi.org/10.1002/pssa.2210710102

    Article  CAS  Google Scholar 

  12. H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, J. Appl. Phys. 86, 6451 (1999). https://doi.org/10.1063/1.371708

    Article  CAS  Google Scholar 

  13. M. Higuchi, S. Uekusa, R. Nakano, K. and Yokogawa, J. Appl. Phys. 74, 6710 (1993). https://doi.org/10.1063/1.355093

    Article  CAS  Google Scholar 

  14. Y. Shigesato, S. Takaki, T. and Haranoh, J. Appl. Phys. 71, 3356 (1992). https://doi.org/10.1063/1.350931

    Article  CAS  Google Scholar 

  15. Yu. M. Nikolaenko, A. B. Mukhin, V. A. Chaika, V. and V. Burkhovetskii, Tech. Phys. 55, 1189 (2010).

    Article  CAS  Google Scholar 

  16. A. A. Tikhii, Yu. M. Nikolaenko, Yu. I. Zhikhareva, I. and V. Zhikharev, in Proc. 7th Int. Congress on Energy Fluxes and Radiation Effects (EFRE-2020 Online): Abstracts (Sib. Otd. Ross. Akad. Nauk, Tomsk, 2020), p. 601.

  17. A. A. Tikhii, Yu. M. Nikolaenko, Yu. I. Zhikhareva, I. and V. Zhikharev, Opt. Spectrosc. 128, 1667 (2020). https://doi.org/10.1134/S0030400X20100252]

    Article  CAS  Google Scholar 

  18. A. A. Tikhii, Yu. M. Nikolaenko, Yu. I. Zhikhareva, A. S. Kornievets, and I. V. Zhikharev, Semiconductors 52, 320 (2018). https://doi.org/10.1134/S1063782618030223

    Article  CAS  Google Scholar 

  19. V. A. Gritskikh, I. V. Zhikharev, S. V. Kara-Murza, N. V. Korchikova, T. V. Krasnyakova, Y. M. Nikolaenko, A. A. Tikhii, A. V. Pavlenko, and Y. I. Yurasov, in Advanced Materials Techniques, Physics, Mechanics and Applications, Ed. by I. A. Parinov, Springer Proceedings in Physics (Springer, Berlin, 2017), Vol. 193, p. 55. https://doi.org/10.1007/978-3-319-56062-5

  20. A. A. Tikhii, V. A. Gritskikh, S. V. Kara-Murza, N. V. Korchikova, Yu. M. Nikolaenko, Yu. I. Zhikhareva, I. V. Zhikharev, in European Materials Research Society Spring Meeting 2016 (E-MRS 2016) (Lille, 2016), p. 32. https://www.european-mrs.com/2016-spring-symposium-l-european-materials-research-society.

  21. A. A. Tikhii, Yu. M. Nikolaenko, M. Yu. Badekin, V. N. Sayapin, N. P. Ivanitsyn, and I. V. Zhikharev, Vestn. Donetsk. Nats. Univ., Ser. A: Estestv. Nauki 3, 112 (2017).

    Google Scholar 

  22. A. A. Tikhii, Yu. I. Zhikhareva, and I. V. Zhikharev, in Abstracts of Papers of Int. Conf. (Politekh-Press, St. Petersburg, 2021), p. 252. https://dspace.lgpu.org//handle/123456789/5484

    Google Scholar 

  23. A. A. Tikhii, K. A. Svyrydova, Yu. I. Zhikhareva, I. and V. Zhikharev, J. Appl. Spectrosc. 88, 975 (2021). https://doi.org/10.1103/PhysRevLett.29.274]

    Article  CAS  Google Scholar 

  24. H. G. Tompkins E. and A. Irene, Handbook Ellipsometry (William Andrew, New York, 2005).

    Google Scholar 

  25. A. J. Walsh Silva, L. F. Da, Wei Su-Huai, C. Korber, A. Klein, L. F. J. Piper, A. de Masi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange, and R. G. Egdell, Phys. Rev. Lett. 100, 167402 (2008). https://doi.org/10.1103/PhysRevLett.100.167402

    Article  CAS  Google Scholar 

  26. Y. Furubayashi, M. Maehara, T. and Yamamoto, ACS Appl. Electron. Mater. 1, 1545 (2019). https://doi.org/10.1021/acsaelm.9b00317

    Article  CAS  Google Scholar 

  27. L. Gupta, A. Mansingh, P. and K. Srivastava, Thin Solid Films 176, 33 (1989). https://doi.org/10.1016/0040-6090(89)90361-1

    Article  CAS  Google Scholar 

  28. A. Schleife, M. D. Neumann, N. Esser, Z. Galazka, A. Gottwald, J. Nixdorf, R. Goldhahn, and M. Feneberg, J. New Phys. 20, 053016 (2018). https://doi.org/10.1088/1367-2630/aabeb0

    Article  CAS  Google Scholar 

  29. N. M. Ravindra, P. Ganapathy, J. and Choi, Infrared Phys. Technol. 50, 21 (2007). https://doi.org/10.1016/j.infrared.2006.04.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tikhii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhii, A.A., Nikolaenko, Y.M., Svyrydova, K.A. et al. On the Optical Properties and Structure of In2O3 Films Deposited onto Al2O3 (012) Substrates by dc-Magnetron Sputtering. J. Surf. Investig. 17, 562–567 (2023). https://doi.org/10.1134/S1027451023030151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023030151

Keywords:

Navigation