Log in

Features of the Generation of Vortex Motion by Waves on the Surface of Shallow and Deep Water

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2023

This article has been updated

Abstract

Experimental studies of processes of the formation of vortex motion on the surface of shallow and the deep water are conducted; this motion is generated by two waves with a frequency of 6 Hz propagating on the surface at an angle of 90 degrees. Experiments are carried out in a glass bath with dimensions of 70 × 70 cm. The water depth varies from 2 cm to 19 cm. It is established that, under the same conditions of wave excitation, one large vortex and several lubricating ones are formed on the surface of shallow water, and several large vortices with vorticity of different signs are formed on the surface of deep water. It is shown that, in the steady-state mode, the values of the vorticity and the vortex-motion energy change chaotically near a certain average value. The PDF distributions of the vorticity and energy values are close to the Gaussian ones at the 19th s of pum**, but they are significantly deformed by the 900th s as a result of the formation of large-scale vortices on the surface of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Change history

REFERENCES

  1. S. V. Filatov, S. A. Aliev, A. A. Levchenko, and D. A. Khramov, JETP Lett. 104, 702 (2016). https://doi.org/10.1134/S0021364016220082

    Article  CAS  Google Scholar 

  2. S. V. Filatov, V. M. Parfenyev, S. S. Vergeles, M. Yu. Brazhnikov, A. A. Levchenko, and V. V. Lebedev, Phys. Rev. Lett. 116, 5 (2016). https://doi.org/10.1103/PhysRevLett.116.054501

    Article  CAS  Google Scholar 

  3. N. Francois, H. **a, H. Punzmann, and M. Shats, Phys. Rev. Lett. 110, 194501 (2013). https://doi.org/10.1103/PhysRevLett.110.194501

    Article  CAS  Google Scholar 

  4. A. Von Kameke, F. Huhn, G. Fernandez-Garcia, A. P. Munuzuri, and V. Perez-Munuzuri, Phys. Rev. Lett. 81, 066211 (2010). https://doi.org/10.1103/PhysRevE.81.066211

    Article  CAS  Google Scholar 

  5. A. P. Abella, Mater. Lett. 283, 128720 (2021). https://doi.org/10.1016/j.matlet.2020.128720

    Article  CAS  Google Scholar 

  6. A. P. Abella and M. N. Soriano, J. Exp. Theor. Phys. 130, 452 (2020).

    Article  CAS  Google Scholar 

  7. S. V. Filatov, D. A. Khramov, A. M. Likhter, and A. A. Levchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 1225 (2017). https://doi.org/10.1134/S1027451017060271

    Article  CAS  Google Scholar 

  8. N. Francois and H. **a, Phys. Fluids 29, 111107 (2017). https://doi.org/10.1063/1.5000863

    Article  CAS  Google Scholar 

  9. S. V. Filatov, D. A. Khramov, and A. A. Levchenko, JETP Lett. 106, 330 (2017). https://doi.org/10.1134/S0021364017170076

    Article  CAS  Google Scholar 

  10. S. V. Filatov, A. V. Orlov, M. Yu. Brazhnikov, and A. A. Levchenko, JETP Lett. 108, 519 (2018). https://doi.org/10.1134/S0021364018200080

    Article  CAS  Google Scholar 

  11. L. Biferale, S. Musacchio, and F. Toschi, Phys. Rev. Lett. 108, 164501 (2012). https://doi.org/10.1103/PhysRevLett.108.164501

    Article  CAS  Google Scholar 

  12. S. V. Filatov, A. V. Poplevin, A. A. Levchenko, and V. M. Parfenyev, Phys. D (Amsterdam, Neth.) 434, 1 (2022). https://doi.org/10.1016/j.physd.2022.133218

  13. S. V. Filatov, A. A. Levchenko, and D. A. Khramov, Results Phys. 13, 102229 (2019). https://doi.org/10.1016/j.rinp.2019.102229

    Article  Google Scholar 

  14. L. V. Abdurakhimov, M. Yu. Brazhnikov, A. A. Levchenko, JETP Lett. 88, 19 (2008). https://doi.org/10.1134/S0021364008130055

    Article  CAS  Google Scholar 

  15. E. Falcon, S. Aumaitre, C. Falcon, C. Laroche, and S. Fauve, Phys. Rev. Lett. 100, 064503 (2008). https://doi.org/10.1103/PhysRevLett.100.064503

    Article  CAS  Google Scholar 

  16. N. Francois, H. **a, H. Punzmann, et al., Phys. Rev. X 4, 021021 (2014). https://doi.org/10.1103/PhysRevX.4.021021

    Article  CAS  Google Scholar 

  17. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967). https://doi.org/10.1063/1.1762301

    Article  Google Scholar 

  18. V. M. Parfenyev and S. S. Vergeles, Phys. Rev. Fluids 3, 064702 (2018). https://doi.org/10.1103/PhysRevFluids.3.064702

    Article  Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 6: Fluid Dynamics (Fizmatlit, Moscow, 2003) [in Russian].

  20. S. V. Filatov, A. A. Levchenko, M. Yu. Brazhnikov, and L. P. Deglin, Instrum. Exp. Tech. 56, 731 (2018). https://doi.org/10.1134/S0020441214010199

    Article  Google Scholar 

  21. V. M. Parfenyev, S. V. Filatov, M. Yu. Brazhnikov, S. S. Vergeles, and A. A. Levchenko, Phys. Rev. Fluids 4, 114701 (2019). https://doi.org/10.1103/PhysRevFluids.4.11470

  22. W. Thielicke and E. Stamhuis, J. Open Res. Software 2, e30 (2014). https://doi.org/10.5334/jors.bl

    Article  Google Scholar 

  23. N. Francois, H. **a, H. Punzmann, P. W. Fontana, and M. Shats, Nat. Commun. 8, 14325 (2017). https://doi.org/10.1038/ncomms14325

    Article  CAS  Google Scholar 

  24. S. V. Filatov, A. A. Levchenko, and L. P. Mezhov-Deglin, Phys. Wave Phenom. 27, 327 (2019). https://doi.org/10.3103/S1541308X19040149

    Article  Google Scholar 

  25. R. Colombi, N. Rohde, M. Schlüter, and A. von Kameke, Fluids 7, 2002 (2022). https://doi.org/10.3390/fluids7050148

    Article  CAS  Google Scholar 

  26. E. S. Wentzel, Probability Theory (First Steps) (Mir, Moscow, 1982).

  27. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge Univ. Press, New York, 1996; FAZIS, Moscow, 1998).

  28. P. G. Frik, Turbulence: Approaches and Models (Perms. Gos. Tekh. Univ., Perm, 1998) [in Russian].

    Google Scholar 

  29. G. Fal’kovich, Modern Fluid Dynamics (Inst. Komp’yut. Issled., Moscow, 2018) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2019-1893.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Poplevin or A. A. Levchenko.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, S.V., Poplevin, A.V., Likhter, A.M. et al. Features of the Generation of Vortex Motion by Waves on the Surface of Shallow and Deep Water. J. Surf. Investig. 16, 1135–1145 (2022). https://doi.org/10.1134/S1027451022060374

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060374

Keywords:

Navigation