Log in

Features of the Formation of Ripple Structures on the Surface of Silicon under Irradiation with a Focused Gallium Ion Beam

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The processes of microrelief formation on the Si(100) surface under irradiation with a 30-keV Ga+-ion beam with doses of D = 6 × 1016–4 × 1018 cm–2 at incidence angles of θ = 0°–50° are studied. It is established that a ripple structure is formed in an angular range of θ = 25°–35° at D = 2 × 1017–2 × 1018 cm–2. However, a well reproducible ripple structure is observed at incidence angles of θ = 30° ± 2° starting from irradiation doses of 2 × 1017 cm–2. As D increases from 2 × 1017 to 2 × 1018 cm–2, the wavelength and the amplitude increase from ~150 to ~400 nm and from ~30 to ~70 nm, respectively. At D > 2 × 1018 cm–2, the ripple structure is destroyed. The features of the formation of such a Si surface relief using a Ga+-ion beam are a rather narrow angular range in which the relief is formed and the value of the irradiation dose at which its nucleation begins. The reasons for these features can be precipitates of implanted Ga in the Si surface layer and the angular dependences of the sputtering yield and composition of the Si surface layer irradiated with a Ga+ ion beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. A. Makeev, R. Cuerno, and A. Barbasi, Nucl. Instrum. Methods Phys. Res., Sect. B 197, 185 (2002). https://doi.org/10.1016/S0168-583X(02)01436-2

    Article  CAS  Google Scholar 

  2. U. Valbusa, C. Borgano, and F. Mongeot, J. Phys.: Condens. Matter 14, 8153 (2002). https://doi.org/10.1088/0953-8984/14/35/301

    Article  Google Scholar 

  3. J. Munoz-Garcia, L. Vazquez, M. Castro, et al., Mater. Sci. Eng. R 86, 1 (2014). https://doi.org/10.1016/j.mser.2014.09.001

    Article  Google Scholar 

  4. K. Wittmaack, Surf. Interface Anal. 29, 721 (2000). https://doi.org/10.1002/1096-9918(200010)29:10%3C721::AID-SIA916%3E3.0.CO;2-Q

    Article  CAS  Google Scholar 

  5. V. I. Bachurin, P. A. Lepshin, and V. K. Smirnov, Vacuum 56, 241 (2000). https://doi.org/10.1016/S0042-207X(99)00194-3

    Article  CAS  Google Scholar 

  6. G. Carter and V. Vishnyakov, Surf. Interface Anal. 23, 514 (1995). https://doi.org/10.1002/sia.740230711

    Article  CAS  Google Scholar 

  7. K. Elst and W. Vandervorst, J. Vac. Sci. Technol., A 12, 3205 (1994). https://doi.org/10.1116/1.579239

    Article  CAS  Google Scholar 

  8. V. K. Smirnov, D. S. Kibalov, S. A. Krivelevich, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 147, 310 (1999). https://doi.org/10.1016/S0168-583X(98)00610-7

    Article  CAS  Google Scholar 

  9. V. I. Bachurin, P. A. Lepshin, V. K. Smirnov, and A. B. Churilov, Izv. Ross. Akad. Nauk, Ser. Fiz. 62, 703 (1998).

    CAS  Google Scholar 

  10. L. Frey, C. Lehrer, and H. Ryssel, Appl. Phys. A 76, 1017 (2003). https://doi.org/10.1007/s00339-002-1943-1

    Article  Google Scholar 

  11. M. Rommel, G. Spoldi, V. Yanev, et al., J. Vac. Technol., B 28, 595 (2010). https://doi.org/10.1116/1.3431085

  12. S. Habenicht, K. P. Lieb, J. Koch, and A. D. Wieck, Phys. Rev. B 65, 115327 (2002). https://doi.org/10.1103/PhysRevB.65.115327

    Article  CAS  Google Scholar 

  13. H. X. Qian and W. Znou, Mater. Lett. 77, 113 (2012). https://doi.org/10.1016/j.matlet.2012.03.003

    Article  CAS  Google Scholar 

  14. H. Gnaser, B. Reuscher, and A. Zeuner, Nucl. Instrum. Methods Phys. Res., Sect. B 285, 142 (2012). https://doi.org/10.1016/j.nimb.2012.05.028

    Article  CAS  Google Scholar 

  15. F. Datta, Wu. Yuh-Renn, and Y. L. Wang, Phys. Rev. D: Part. Fields 63, 125407 (2001). https://doi.org/10.1103/PhysRevB.63.125407

    Article  CAS  Google Scholar 

  16. D. P. Adams, M. J. Vasile, T. M. Mayer, and V. C. Hodges, J. Vac. Sci. Technol. B 21, 2334 (2003). https://doi.org/10.1116/1.1619421

    Article  CAS  Google Scholar 

  17. G. Carter, J. Appl. Phys. 83, 455 (1999). https://doi.org/10.1063/1.369408

    Article  Google Scholar 

  18. W. Moberly Chan, MRS Online Proc. Library 960, 602 (2006). https://doi.org/10.1557/PROC-0960-N10-02-LL06-02

    Article  Google Scholar 

  19. J. Meingails, J. Vac. Sci. Technol., B 5, 469 (1987). https://doi.org/10.1116/1.583937

    Article  Google Scholar 

  20. I. N. Kots, A. S. Kolomiitsev, S. A. Lisitsyn, et al., Russ. Microelectron. 48, 72 (2019). https://doi.org/10.1134/S1063739719020057

    Article  CAS  Google Scholar 

  21. S. Masko, F. Frost, B. Ziberi, et al., Nanotechnology 21, 085301 (2010). https://doi.org/10.1088/0957-4484/21/8/085301

    Article  CAS  Google Scholar 

  22. K. Zhang, O. Bobes, and H. Hofsass, Nanotechnology 25, 085301 (2014). https://doi.org/10.1088/0957-4484/25/8/085301

    Article  CAS  Google Scholar 

  23. M. Engler, F. Frost, S. Müller, et al., Nanotechnnology 25, 115303 (2014). https://doi.org/10.1088/0957-4484/25/11/115303

    Article  CAS  Google Scholar 

  24. Y. Liu, D. Hirsch, R. Fechner, et al., Appl. Phys. A 124, 73 (2018). https://doi.org/10.1007/s00339-017-1393-4

    Article  CAS  Google Scholar 

  25. A. Redondo-Cubero, K. Lorenz, F. J. Palomares, et al., J. Phys.: Condens. Matter 30, 274001 (2018). https://doi.org/10.1088/1361-648X/aac79a

    Article  CAS  Google Scholar 

  26. V. K. Smirnov, D. S. Kibalov, P. A. Lepshin, and V. I. Bachurin, Izv. Ross. Akad. Nauk, Ser. Fiz. 64, 626 (2000).

  27. P. Karmakar, S. A. Mollick, D. Ghose, and A. Chakrabarti, Appl. Phys. Lett. 93, 103102 (2008). https://doi.org/10.1063/1.2974086

    Article  CAS  Google Scholar 

  28. R. M. Bradley and M. E. Harper, J. Vac. Sci. Technol., A 6, 2390 (1988). https://doi.org/10.1116/1.575561

    Article  CAS  Google Scholar 

  29. R. Cuerno and A. I. Barbasi, Phys. Rev. Lett. 74, 4746 (1995). https://doi.org/10.1103/PhysRevLett.74.4746

    Article  CAS  Google Scholar 

  30. B. Kahng, H. Jeong, and A. I. Barbasi, Appl. Phys. Lett. 78, 805 (2001). https://doi.org/10.1063/1.1343468

    Article  CAS  Google Scholar 

  31. A. S. Rudyi and V. I. Bachurin, Bull. Russ. Acad. Sci.: Phys. 72, 586 (2008).

    Article  Google Scholar 

  32. V. I. Bachurin, I. V. Zhuravlev, D. E. Pukhov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 784 (2020). https://doi.org/10.1134/S1027451020040229

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported within the framework of a State Assignment of the Ministry of Education and Science no. FFNN-2022-0018 for the Yaroslavl branch of the Valiev Institute of Physics and Technology, Russian Academy of Sciences, using the equipment of Facilities Sharing Centre “Diagnostics of Micro- and Nanostructures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bachurin.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, M.A., Bachurin, V.I., Mazaletsky, L.A. et al. Features of the Formation of Ripple Structures on the Surface of Silicon under Irradiation with a Focused Gallium Ion Beam. J. Surf. Investig. 15 (Suppl 1), S150–S156 (2021). https://doi.org/10.1134/S1027451022020380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022020380

Keywords:

Navigation