Log in

Using Optical Zone Melting for Growing Single Crystals of Superconductors

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The reliability of fundamental studies of superconductivity depends on the quality of the materials under study. Optical zone melting yields high-quality single crystals without impurities, which can be difficult for other technologies. The paper describes the growth procedure for single crystals of several families of superconductors: bismuth high-temperature superconductors Bi2Sr2CaCu2O8 + δ and Bi2Sr2–xLaxCuO6 + δ and a superconductor with an assumed p symmetry of the superconducting order parameter Sr2RuO4. We discuss the search criteria for synthesizing high-temperature yttrium superconductors YBa2Cu3O7 + δ by optical zone melting, which do not lead to the formation of single crystals. The procedure for obtaining single crystals includes several stages. The first is to anneal a mixture of powders of the required oxides and carbonates, taken in specific proportions, at temperatures up to 850°C. A solid-phase reaction takes place, resulting in the desired polycrystalline complex oxide; rods with a length of ~5–10 cm are obtained from this oxide using a hydraulic press. The second stage is annealing of the rods in air at temperatures up to 940°C and, if necessary, melting in an optical-zone-melting unit using lamps with a rated power of 500 W at an adjustable power from 20 to 95% with a drawing speed of 20–30 mm/h. The third stage is the growth of a single crystal at 20–95% power at a rate of 0.1–20 mm/h. The result is a mixture that disintegrates upon cracking into single crystals up to several millimeters in size. Measurements of the temperature dependence of the dynamic magnetic susceptibility of the synthesized single crystals at a frequency of 100 kHz are carried out, which makes it possible to determine the temperature of the superconducting transition and its width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Akashi, K. Matumi, T. Okada, and T. Mizutani, IEEE Trans. 5, 285 (1969). https://doi.org/10.1109/TMAG.1969.1066457

    Article  CAS  Google Scholar 

  2. H. Dabkowska and B. D. Gaulin, J. Optoelectron. Adv. Mater. 9, 1215 (2007).

    CAS  Google Scholar 

  3. S. Koohpayeh, D. Fort, and J. Abell, Prog. Cryst. Growth Charact. Mater. 54, 121 (2008). https://doi.org/10.1016/j.pcrysgrow.2008.06.001

    Article  CAS  Google Scholar 

  4. N. Wolff, T. Schwaigert, D. Siche, D. Schlom, and D. Klimm, J. Cryst. Growth 532, 125426 (2019). https://doi.org/10.1016/j.jcrysgro.2019.125426

    Article  CAS  Google Scholar 

  5. Sh. Ning, Y. Wang, Zh. Zhu, and J. Zhang, CrystEngComm 22, 8236 (2020). https://doi.org/10.1039/D0CE01236J

    Article  CAS  Google Scholar 

  6. M. Gao, P. Zhang, L. Luo, R. Guo, and Y. Wang, Optik 225, 165814 (2021). https://doi.org/10.1016/j.ijleo.2020.165814

    Article  CAS  Google Scholar 

  7. A. M. Neminsky, P. N. Nikolaev, D. V. Shovkun, E. E. Laukhina, and E. B. Yagubskii, Phys. Rev. Lett. 72, 3092 (1994). https://doi.org/10.1103/PhysRevLett.72.3092

    Article  CAS  Google Scholar 

  8. J. S. Wen, Z. J. Xu, G. Xu, M. Hucker, J. Tranquada, and G. D. Gu, J. Cryst. Growth 310, 1401 (2008). https://doi.org/10.1016/j.jcrysgro.2007.09.028

    Article  CAS  Google Scholar 

  9. G. Gu, K. Takamuku, N. Nakamura, S. Kagiya, N. Koshizuka, and S. Tanaka, “Crystal growth of high-Tc superconductor Bi2Sr2CaCu2Ox by floating zone method, in Advances in Superconductivity V: Proc. 5th Int. Symposium on Superconductivity (Kobe, 1992), p. 573. https://doi.org/10.1007/978-4-431-68305-6_128

  10. A. B. Kulakov, D. V. Shovkun, and M. R. Trunin, Inorg. Mater. 55, 1242 (2019). https://doi.org/10.1134/S0020168519120094

    Article  CAS  Google Scholar 

  11. L. Ya. Vinnikov, A. G. Yukina, V. N. Zverev, A. D. Shovkun, and A. B. Kulakov, J. Exp. Theor. Phys. 119, 514 (2014). https://doi.org/10.1134/S1063776114080196

    Article  CAS  Google Scholar 

  12. A. J. Smits, W. J. Elion, J. van Ruitenbeek, L. J. Jongh, and P. Groen, Phys. C (Amsterdam, Neth.) 199, 276 (1992). https://doi.org/10.1016/0921-4534(92)90411-5

  13. S. Ono and Y. Ando, Phys. C (Amsterdam, Neth.) 388, 321 (2003). https://doi.org/10.1016/S0921-4534(02)02472-3

  14. J. Röhler, Phys. C (Amsterdam, Neth.) 470, 39 (2009). https://doi.org/10.1016/j.physc.2009.11.027

  15. Y. Ando, T. Murayama, and S. Ono, Phys. C (Amsterdam, Neth.) 341, 1913 (2000). https://doi.org/10.1016/S0921-4534(00)01363-0

  16. R. Müller, M. Schneider, Ch. Janowitz, R.-S. Unger, T. Stemmler, A. Krapf, H. Dwelk, R. Manzke, K. Roßnagel, L. Kipp, and M. Skibowski, J. Supercond. 14, 659 (2001). https://doi.org/10.1023/A:1013235407579

    Article  Google Scholar 

  17. B. Shastry and P. Mai, Phys. Rev. B 101, 115121 (2020). https://doi.org/10.1103/PhysRevB.101.115121

    Article  CAS  Google Scholar 

  18. S. Kashiwaya, H. Kambara, H. Kashiwaya, T. Furuta, H. Yaguchi, Y. Asano, Y. Tanaka, and Y. Maeno, Phys. C (Amsterdam, Neth.) 470, 736 (2010). https://doi.org/10.1016/j.physc.2010.02.007

  19. S. V. Bakurskiy, Ya. V. Fominov, A. F. Shevchun, Y. Asano, Y. Tanaka, M. Yu. Kupriyanov, A. A. Golubov, M. R. Trunin, H. Kashiwaya, S. Kashiwaya, and Y. Maeno, Phys. Rev. B 98, 134508 (2018). https://doi.org/10.1103/PhysRevB.98.134508

    Article  CAS  Google Scholar 

  20. K. Oka and T. Ito, Phys. C (Amsterdam, Neth.) 235240, 355 (1994). https://doi.org/10.1016/0921-4534(94)90359-X

Download references

Funding

The work was carried out within the framework of the state assignment of the Institute of Solid State Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Shovkun.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shovkun, A.D., Shevchun, A.F., Shovkun, D.V. et al. Using Optical Zone Melting for Growing Single Crystals of Superconductors. J. Surf. Investig. 16, 118–121 (2022). https://doi.org/10.1134/S1027451022010323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022010323

Keywords:

Navigation